reports.shopfloorenergycategory   F
last analyzed

Complexity

Total Complexity 108

Size/Duplication

Total Lines 569
Duplicated Lines 98.24 %

Importance

Changes 0
Metric Value
eloc 419
dl 559
loc 569
rs 2
c 0
b 0
f 0
wmc 108

3 Methods

Rating   Name   Duplication   Size   Complexity  
F Reporting.on_get() 537 537 106
A Reporting.on_options() 3 3 1
A Reporting.__init__() 3 3 1

How to fix   Duplicated Code    Complexity   

Duplicated Code

Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.

Common duplication problems, and corresponding solutions are:

Complexity

 Tip:   Before tackling complexity, make sure that you eliminate any duplication first. This often can reduce the size of classes significantly.

Complex classes like reports.shopfloorenergycategory often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import falcon
2
import simplejson as json
3
import mysql.connector
4
import config
5
from datetime import datetime, timedelta, timezone
6
from core import utilities
7
from decimal import Decimal
8
9
10 View Code Duplication
class Reporting:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
11
    @staticmethod
12
    def __init__():
13
        pass
14
15
    @staticmethod
16
    def on_options(req, resp):
17
        resp.status = falcon.HTTP_200
18
19
    ####################################################################################################################
20
    # PROCEDURES
21
    # Step 1: valid parameters
22
    # Step 2: query the shopfloor
23
    # Step 3: query energy categories
24
    # Step 4: query associated sensors
25
    # Step 5: query associated points
26
    # Step 6: query base period energy input
27
    # Step 7: query reporting period energy input
28
    # Step 8: query tariff data
29
    # Step 9: query associated sensors and points data
30
    # Step 10: construct the report
31
    ####################################################################################################################
32
    @staticmethod
33
    def on_get(req, resp):
34
        print(req.params)
35
        shopfloor_id = req.params.get('shopfloorid')
36
        period_type = req.params.get('periodtype')
37
        base_start_datetime_local = req.params.get('baseperiodstartdatetime')
38
        base_end_datetime_local = req.params.get('baseperiodenddatetime')
39
        reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime')
40
        reporting_end_datetime_local = req.params.get('reportingperiodenddatetime')
41
42
        ################################################################################################################
43
        # Step 1: valid parameters
44
        ################################################################################################################
45
        if shopfloor_id is None:
46
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SHOPFLOOR_ID')
47
        else:
48
            shopfloor_id = str.strip(shopfloor_id)
49
            if not shopfloor_id.isdigit() or int(shopfloor_id) <= 0:
50
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SHOPFLOOR_ID')
51
52
        if period_type is None:
53
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
54
        else:
55
            period_type = str.strip(period_type)
56
            if period_type not in ['hourly', 'daily', 'monthly', 'yearly']:
57
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
58
59
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
60
        if config.utc_offset[0] == '-':
61
            timezone_offset = -timezone_offset
62
63
        base_start_datetime_utc = None
64
        if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0:
65
            base_start_datetime_local = str.strip(base_start_datetime_local)
66
            try:
67
                base_start_datetime_utc = datetime.strptime(base_start_datetime_local,
68
                                                            '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
69
                    timedelta(minutes=timezone_offset)
70
            except ValueError:
71
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
72
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
73
74
        base_end_datetime_utc = None
75
        if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0:
76
            base_end_datetime_local = str.strip(base_end_datetime_local)
77
            try:
78
                base_end_datetime_utc = datetime.strptime(base_end_datetime_local,
79
                                                          '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
80
                    timedelta(minutes=timezone_offset)
81
            except ValueError:
82
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
83
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
84
85
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
86
                base_start_datetime_utc >= base_end_datetime_utc:
87
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
88
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
89
90
        if reporting_start_datetime_local is None:
91
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
92
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
93
        else:
94
            reporting_start_datetime_local = str.strip(reporting_start_datetime_local)
95
            try:
96
                reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local,
97
                                                                 '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
98
                    timedelta(minutes=timezone_offset)
99
            except ValueError:
100
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
101
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
102
103
        if reporting_end_datetime_local is None:
104
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
105
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
106
        else:
107
            reporting_end_datetime_local = str.strip(reporting_end_datetime_local)
108
            try:
109
                reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local,
110
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
111
                    timedelta(minutes=timezone_offset)
112
            except ValueError:
113
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
114
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
115
116
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
117
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
118
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
119
120
        ################################################################################################################
121
        # Step 2: query the shopfloor
122
        ################################################################################################################
123
        cnx_system = mysql.connector.connect(**config.myems_system_db)
124
        cursor_system = cnx_system.cursor()
125
126
        cnx_energy = mysql.connector.connect(**config.myems_energy_db)
127
        cursor_energy = cnx_energy.cursor()
128
129
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
130
        cursor_historical = cnx_historical.cursor()
131
132
        cursor_system.execute(" SELECT id, name, area, cost_center_id "
133
                              " FROM tbl_shopfloors "
134
                              " WHERE id = %s ", (shopfloor_id,))
135
        row_shopfloor = cursor_system.fetchone()
136
        if row_shopfloor is None:
137
            if cursor_system:
138
                cursor_system.close()
139
            if cnx_system:
140
                cnx_system.disconnect()
141
142
            if cursor_energy:
143
                cursor_energy.close()
144
            if cnx_energy:
145
                cnx_energy.disconnect()
146
147
            if cnx_historical:
148
                cnx_historical.close()
149
            if cursor_historical:
150
                cursor_historical.disconnect()
151
            raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SHOPFLOOR_NOT_FOUND')
152
153
        shopfloor = dict()
154
        shopfloor['id'] = row_shopfloor[0]
155
        shopfloor['name'] = row_shopfloor[1]
156
        shopfloor['area'] = row_shopfloor[2]
157
        shopfloor['cost_center_id'] = row_shopfloor[3]
158
159
        ################################################################################################################
160
        # Step 3: query energy categories
161
        ################################################################################################################
162
        energy_category_set = set()
163
        # query energy categories in base period
164
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
165
                              " FROM tbl_shopfloor_input_category_hourly "
166
                              " WHERE shopfloor_id = %s "
167
                              "     AND start_datetime_utc >= %s "
168
                              "     AND start_datetime_utc < %s ",
169
                              (shopfloor['id'], base_start_datetime_utc, base_end_datetime_utc))
170
        rows_energy_categories = cursor_energy.fetchall()
171
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
172
            for row_energy_category in rows_energy_categories:
173
                energy_category_set.add(row_energy_category[0])
174
175
        # query energy categories in reporting period
176
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
177
                              " FROM tbl_shopfloor_input_category_hourly "
178
                              " WHERE shopfloor_id = %s "
179
                              "     AND start_datetime_utc >= %s "
180
                              "     AND start_datetime_utc < %s ",
181
                              (shopfloor['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
182
        rows_energy_categories = cursor_energy.fetchall()
183
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
184
            for row_energy_category in rows_energy_categories:
185
                energy_category_set.add(row_energy_category[0])
186
187
        # query all energy categories in base period and reporting period
188
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
189
                              " FROM tbl_energy_categories "
190
                              " ORDER BY id ", )
191
        rows_energy_categories = cursor_system.fetchall()
192
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
193
            if cursor_system:
194
                cursor_system.close()
195
            if cnx_system:
196
                cnx_system.disconnect()
197
198
            if cursor_energy:
199
                cursor_energy.close()
200
            if cnx_energy:
201
                cnx_energy.disconnect()
202
203
            if cnx_historical:
204
                cnx_historical.close()
205
            if cursor_historical:
206
                cursor_historical.disconnect()
207
            raise falcon.HTTPError(falcon.HTTP_404,
208
                                   title='API.NOT_FOUND',
209
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
210
        energy_category_dict = dict()
211
        for row_energy_category in rows_energy_categories:
212
            if row_energy_category[0] in energy_category_set:
213
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
214
                                                                "unit_of_measure": row_energy_category[2],
215
                                                                "kgce": row_energy_category[3],
216
                                                                "kgco2e": row_energy_category[4]}
217
218
        ################################################################################################################
219
        # Step 4: query associated sensors
220
        ################################################################################################################
221
        point_list = list()
222
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
223
                              " FROM tbl_shopfloors st, tbl_sensors se, tbl_shopfloors_sensors ss, "
224
                              "      tbl_points p, tbl_sensors_points sp "
225
                              " WHERE st.id = %s AND st.id = ss.shopfloor_id AND ss.sensor_id = se.id "
226
                              "       AND se.id = sp.sensor_id AND sp.point_id = p.id "
227
                              " ORDER BY p.id ", (shopfloor['id'],))
228
        rows_points = cursor_system.fetchall()
229
        if rows_points is not None and len(rows_points) > 0:
230
            for row in rows_points:
231
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
232
233
        ################################################################################################################
234
        # Step 5: query associated points
235
        ################################################################################################################
236
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
237
                              " FROM tbl_shopfloors s, tbl_shopfloors_points sp, tbl_points p "
238
                              " WHERE s.id = %s AND s.id = sp.shopfloor_id AND sp.point_id = p.id "
239
                              " ORDER BY p.id ", (shopfloor['id'],))
240
        rows_points = cursor_system.fetchall()
241
        if rows_points is not None and len(rows_points) > 0:
242
            for row in rows_points:
243
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
244
245
        ################################################################################################################
246
        # Step 6: query base period energy input
247
        ################################################################################################################
248
        base = dict()
249
        if energy_category_set is not None and len(energy_category_set) > 0:
250
            for energy_category_id in energy_category_set:
251
                kgce = energy_category_dict[energy_category_id]['kgce']
252
                kgco2e = energy_category_dict[energy_category_id]['kgco2e']
253
254
                base[energy_category_id] = dict()
255
                base[energy_category_id]['timestamps'] = list()
256
                base[energy_category_id]['values'] = list()
257
                base[energy_category_id]['subtotal'] = Decimal(0.0)
258
                base[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0)
259
                base[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0)
260
261
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
262
                                      " FROM tbl_shopfloor_input_category_hourly "
263
                                      " WHERE shopfloor_id = %s "
264
                                      "     AND energy_category_id = %s "
265
                                      "     AND start_datetime_utc >= %s "
266
                                      "     AND start_datetime_utc < %s "
267
                                      " ORDER BY start_datetime_utc ",
268
                                      (shopfloor['id'],
269
                                       energy_category_id,
270
                                       base_start_datetime_utc,
271
                                       base_end_datetime_utc))
272
                rows_shopfloor_hourly = cursor_energy.fetchall()
273
274
                rows_shopfloor_periodically = utilities.aggregate_hourly_data_by_period(rows_shopfloor_hourly,
275
                                                                                        base_start_datetime_utc,
276
                                                                                        base_end_datetime_utc,
277
                                                                                        period_type)
278
                for row_shopfloor_periodically in rows_shopfloor_periodically:
279
                    current_datetime_local = row_shopfloor_periodically[0].replace(tzinfo=timezone.utc) + \
280
                                             timedelta(minutes=timezone_offset)
281
                    if period_type == 'hourly':
282
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
283
                    elif period_type == 'daily':
284
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
285
                    elif period_type == 'monthly':
286
                        current_datetime = current_datetime_local.strftime('%Y-%m')
287
                    elif period_type == 'yearly':
288
                        current_datetime = current_datetime_local.strftime('%Y')
289
290
                    actual_value = Decimal(0.0) if row_shopfloor_periodically[1] is None \
291
                        else row_shopfloor_periodically[1]
292
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
introduced by
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
293
                    base[energy_category_id]['values'].append(actual_value)
294
                    base[energy_category_id]['subtotal'] += actual_value
295
                    base[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce
296
                    base[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e
297
298
        ################################################################################################################
299
        # Step 8: query reporting period energy input
300
        ################################################################################################################
301
        reporting = dict()
302
        if energy_category_set is not None and len(energy_category_set) > 0:
303
            for energy_category_id in energy_category_set:
304
                kgce = energy_category_dict[energy_category_id]['kgce']
305
                kgco2e = energy_category_dict[energy_category_id]['kgco2e']
306
307
                reporting[energy_category_id] = dict()
308
                reporting[energy_category_id]['timestamps'] = list()
309
                reporting[energy_category_id]['values'] = list()
310
                reporting[energy_category_id]['subtotal'] = Decimal(0.0)
311
                reporting[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0)
312
                reporting[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0)
313
                reporting[energy_category_id]['toppeak'] = Decimal(0.0)
314
                reporting[energy_category_id]['onpeak'] = Decimal(0.0)
315
                reporting[energy_category_id]['midpeak'] = Decimal(0.0)
316
                reporting[energy_category_id]['offpeak'] = Decimal(0.0)
317
318
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
319
                                      " FROM tbl_shopfloor_input_category_hourly "
320
                                      " WHERE shopfloor_id = %s "
321
                                      "     AND energy_category_id = %s "
322
                                      "     AND start_datetime_utc >= %s "
323
                                      "     AND start_datetime_utc < %s "
324
                                      " ORDER BY start_datetime_utc ",
325
                                      (shopfloor['id'],
326
                                       energy_category_id,
327
                                       reporting_start_datetime_utc,
328
                                       reporting_end_datetime_utc))
329
                rows_shopfloor_hourly = cursor_energy.fetchall()
330
331
                rows_shopfloor_periodically = utilities.aggregate_hourly_data_by_period(rows_shopfloor_hourly,
332
                                                                                        reporting_start_datetime_utc,
333
                                                                                        reporting_end_datetime_utc,
334
                                                                                        period_type)
335
                for row_shopfloor_periodically in rows_shopfloor_periodically:
336
                    current_datetime_local = row_shopfloor_periodically[0].replace(tzinfo=timezone.utc) + \
337
                                             timedelta(minutes=timezone_offset)
338
                    if period_type == 'hourly':
339
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
340
                    elif period_type == 'daily':
341
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
342
                    elif period_type == 'monthly':
343
                        current_datetime = current_datetime_local.strftime('%Y-%m')
344
                    elif period_type == 'yearly':
345
                        current_datetime = current_datetime_local.strftime('%Y')
346
347
                    actual_value = Decimal(0.0) if row_shopfloor_periodically[1] is None \
348
                        else row_shopfloor_periodically[1]
349
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
350
                    reporting[energy_category_id]['values'].append(actual_value)
351
                    reporting[energy_category_id]['subtotal'] += actual_value
352
                    reporting[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce
353
                    reporting[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e
354
355
                energy_category_tariff_dict = utilities.get_energy_category_peak_types(shopfloor['cost_center_id'],
356
                                                                                       energy_category_id,
357
                                                                                       reporting_start_datetime_utc,
358
                                                                                       reporting_end_datetime_utc)
359
                for row in rows_shopfloor_hourly:
360
                    peak_type = energy_category_tariff_dict.get(row[0], None)
361
                    if peak_type == 'toppeak':
362
                        reporting[energy_category_id]['toppeak'] += row[1]
363
                    elif peak_type == 'onpeak':
364
                        reporting[energy_category_id]['onpeak'] += row[1]
365
                    elif peak_type == 'midpeak':
366
                        reporting[energy_category_id]['midpeak'] += row[1]
367
                    elif peak_type == 'offpeak':
368
                        reporting[energy_category_id]['offpeak'] += row[1]
369
370
        ################################################################################################################
371
        # Step 9: query tariff data
372
        ################################################################################################################
373
        parameters_data = dict()
374
        parameters_data['names'] = list()
375
        parameters_data['timestamps'] = list()
376
        parameters_data['values'] = list()
377
        if energy_category_set is not None and len(energy_category_set) > 0:
378
            for energy_category_id in energy_category_set:
379
                energy_category_tariff_dict = utilities.get_energy_category_tariffs(shopfloor['cost_center_id'],
380
                                                                                    energy_category_id,
381
                                                                                    reporting_start_datetime_utc,
382
                                                                                    reporting_end_datetime_utc)
383
                tariff_timestamp_list = list()
384
                tariff_value_list = list()
385
                for k, v in energy_category_tariff_dict.items():
386
                    # convert k from utc to local
387
                    k = k + timedelta(minutes=timezone_offset)
388
                    tariff_timestamp_list.append(k.isoformat()[0:19][0:19])
389
                    tariff_value_list.append(v)
390
391
                parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name'])
392
                parameters_data['timestamps'].append(tariff_timestamp_list)
393
                parameters_data['values'].append(tariff_value_list)
394
395
        ################################################################################################################
396
        # Step 10: query associated sensors and points data
397
        ################################################################################################################
398
        for point in point_list:
399
            point_values = []
400
            point_timestamps = []
401
            if point['object_type'] == 'ANALOG_VALUE':
402
                query = (" SELECT utc_date_time, actual_value "
403
                         " FROM tbl_analog_value "
404
                         " WHERE point_id = %s "
405
                         "       AND utc_date_time BETWEEN %s AND %s "
406
                         " ORDER BY utc_date_time ")
407
                cursor_historical.execute(query, (point['id'],
408
                                                  reporting_start_datetime_utc,
409
                                                  reporting_end_datetime_utc))
410
                rows = cursor_historical.fetchall()
411
412
                if rows is not None and len(rows) > 0:
413
                    for row in rows:
414
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
415
                                                 timedelta(minutes=timezone_offset)
416
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
417
                        point_timestamps.append(current_datetime)
418
                        point_values.append(row[1])
419
420
            elif point['object_type'] == 'ENERGY_VALUE':
421
                query = (" SELECT utc_date_time, actual_value "
422
                         " FROM tbl_energy_value "
423
                         " WHERE point_id = %s "
424
                         "       AND utc_date_time BETWEEN %s AND %s "
425
                         " ORDER BY utc_date_time ")
426
                cursor_historical.execute(query, (point['id'],
427
                                                  reporting_start_datetime_utc,
428
                                                  reporting_end_datetime_utc))
429
                rows = cursor_historical.fetchall()
430
431
                if rows is not None and len(rows) > 0:
432
                    for row in rows:
433
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
434
                                                 timedelta(minutes=timezone_offset)
435
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
436
                        point_timestamps.append(current_datetime)
437
                        point_values.append(row[1])
438
            elif point['object_type'] == 'DIGITAL_VALUE':
439
                query = (" SELECT utc_date_time, actual_value "
440
                         " FROM tbl_digital_value "
441
                         " WHERE point_id = %s "
442
                         "       AND utc_date_time BETWEEN %s AND %s ")
443
                cursor_historical.execute(query, (point['id'],
444
                                                  reporting_start_datetime_utc,
445
                                                  reporting_end_datetime_utc))
446
                rows = cursor_historical.fetchall()
447
448
                if rows is not None and len(rows) > 0:
449
                    for row in rows:
450
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
451
                                                 timedelta(minutes=timezone_offset)
452
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
453
                        point_timestamps.append(current_datetime)
454
                        point_values.append(row[1])
455
456
            parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
457
            parameters_data['timestamps'].append(point_timestamps)
458
            parameters_data['values'].append(point_values)
459
460
        ################################################################################################################
461
        # Step 12: construct the report
462
        ################################################################################################################
463
        if cursor_system:
464
            cursor_system.close()
465
        if cnx_system:
466
            cnx_system.disconnect()
467
468
        if cursor_energy:
469
            cursor_energy.close()
470
        if cnx_energy:
471
            cnx_energy.disconnect()
472
473
        result = dict()
474
475
        result['shopfloor'] = dict()
476
        result['shopfloor']['name'] = shopfloor['name']
477
        result['shopfloor']['area'] = shopfloor['area']
478
479
        result['base_period'] = dict()
480
        result['base_period']['names'] = list()
481
        result['base_period']['units'] = list()
482
        result['base_period']['timestamps'] = list()
483
        result['base_period']['values'] = list()
484
        result['base_period']['subtotals'] = list()
485
        result['base_period']['subtotals_in_kgce'] = list()
486
        result['base_period']['subtotals_in_kgco2e'] = list()
487
        result['base_period']['total_in_kgce'] = Decimal(0.0)
488
        result['base_period']['total_in_kgco2e'] = Decimal(0.0)
489
        if energy_category_set is not None and len(energy_category_set) > 0:
490
            for energy_category_id in energy_category_set:
491
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
492
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
493
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
494
                result['base_period']['values'].append(base[energy_category_id]['values'])
495
                result['base_period']['subtotals'].append(base[energy_category_id]['subtotal'])
496
                result['base_period']['subtotals_in_kgce'].append(base[energy_category_id]['subtotal_in_kgce'])
497
                result['base_period']['subtotals_in_kgco2e'].append(base[energy_category_id]['subtotal_in_kgco2e'])
498
                result['base_period']['total_in_kgce'] += base[energy_category_id]['subtotal_in_kgce']
499
                result['base_period']['total_in_kgco2e'] += base[energy_category_id]['subtotal_in_kgco2e']
500
501
        result['reporting_period'] = dict()
502
        result['reporting_period']['names'] = list()
503
        result['reporting_period']['energy_category_ids'] = list()
504
        result['reporting_period']['units'] = list()
505
        result['reporting_period']['timestamps'] = list()
506
        result['reporting_period']['values'] = list()
507
        result['reporting_period']['subtotals'] = list()
508
        result['reporting_period']['subtotals_in_kgce'] = list()
509
        result['reporting_period']['subtotals_in_kgco2e'] = list()
510
        result['reporting_period']['subtotals_per_unit_area'] = list()
511
        result['reporting_period']['toppeaks'] = list()
512
        result['reporting_period']['onpeaks'] = list()
513
        result['reporting_period']['midpeaks'] = list()
514
        result['reporting_period']['offpeaks'] = list()
515
        result['reporting_period']['increment_rates'] = list()
516
        result['reporting_period']['total_in_kgce'] = Decimal(0.0)
517
        result['reporting_period']['total_in_kgco2e'] = Decimal(0.0)
518
        result['reporting_period']['increment_rate_in_kgce'] = Decimal(0.0)
519
        result['reporting_period']['increment_rate_in_kgco2e'] = Decimal(0.0)
520
521
        if energy_category_set is not None and len(energy_category_set) > 0:
522
            for energy_category_id in energy_category_set:
523
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
524
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
525
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
526
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
527
                result['reporting_period']['values'].append(reporting[energy_category_id]['values'])
528
                result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal'])
529
                result['reporting_period']['subtotals_in_kgce'].append(
530
                    reporting[energy_category_id]['subtotal_in_kgce'])
531
                result['reporting_period']['subtotals_in_kgco2e'].append(
532
                    reporting[energy_category_id]['subtotal_in_kgco2e'])
533
                result['reporting_period']['subtotals_per_unit_area'].append(
534
                    reporting[energy_category_id]['subtotal'] / shopfloor['area'] if shopfloor['area'] > 0.0 else None)
535
                result['reporting_period']['toppeaks'].append(reporting[energy_category_id]['toppeak'])
536
                result['reporting_period']['onpeaks'].append(reporting[energy_category_id]['onpeak'])
537
                result['reporting_period']['midpeaks'].append(reporting[energy_category_id]['midpeak'])
538
                result['reporting_period']['offpeaks'].append(reporting[energy_category_id]['offpeak'])
539
                result['reporting_period']['increment_rates'].append(
540
                    (reporting[energy_category_id]['subtotal'] - base[energy_category_id]['subtotal']) /
541
                    base[energy_category_id]['subtotal']
542
                    if base[energy_category_id]['subtotal'] > 0.0 else None)
543
                result['reporting_period']['total_in_kgce'] += reporting[energy_category_id]['subtotal_in_kgce']
544
                result['reporting_period']['total_in_kgco2e'] += reporting[energy_category_id]['subtotal_in_kgco2e']
545
546
        result['reporting_period']['total_in_kgco2e_per_unit_area'] = \
547
            result['reporting_period']['total_in_kgce'] / shopfloor['area'] if shopfloor['area'] > 0.0 else None
548
549
        result['reporting_period']['increment_rate_in_kgce'] = \
550
            (result['reporting_period']['total_in_kgce'] - result['base_period']['total_in_kgce']) / \
551
            result['base_period']['total_in_kgce'] \
552
            if result['base_period']['total_in_kgce'] > Decimal(0.0) else None
553
554
        result['reporting_period']['total_in_kgce_per_unit_area'] = \
555
            result['reporting_period']['total_in_kgco2e'] / shopfloor['area'] if shopfloor['area'] > 0.0 else None
556
557
        result['reporting_period']['increment_rate_in_kgco2e'] = \
558
            (result['reporting_period']['total_in_kgco2e'] - result['base_period']['total_in_kgco2e']) / \
559
            result['base_period']['total_in_kgco2e'] \
560
            if result['base_period']['total_in_kgco2e'] > Decimal(0.0) else None
561
562
        result['parameters'] = {
563
            "names": parameters_data['names'],
564
            "timestamps": parameters_data['timestamps'],
565
            "values": parameters_data['values']
566
        }
567
568
        resp.body = json.dumps(result)
569