Total Complexity | 143 |
Total Lines | 715 |
Duplicated Lines | 98.32 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like reports.equipmentefficiency often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | import falcon |
||
2 | import simplejson as json |
||
3 | import mysql.connector |
||
4 | import config |
||
5 | from datetime import datetime, timedelta, timezone |
||
6 | from core import utilities |
||
7 | from decimal import Decimal |
||
8 | |||
9 | |||
10 | View Code Duplication | class Reporting: |
|
|
|||
11 | @staticmethod |
||
12 | def __init__(): |
||
13 | pass |
||
14 | |||
15 | @staticmethod |
||
16 | def on_options(req, resp): |
||
17 | resp.status = falcon.HTTP_200 |
||
18 | |||
19 | #################################################################################################################### |
||
20 | # PROCEDURES |
||
21 | # Step 1: valid parameters |
||
22 | # Step 2: query the equipment |
||
23 | # Step 3: query energy categories |
||
24 | # Step 4: query associated constants |
||
25 | # Step 4: query associated points |
||
26 | # Step 5: query associated fractions |
||
27 | # Step 5: query base period energy input |
||
28 | # Step 6: query base period energy output |
||
29 | # Step 7: query reporting period energy input |
||
30 | # Step 8: query reporting period energy output |
||
31 | # Step 9: query tariff data |
||
32 | # Step 10: query associated points data |
||
33 | # Step 11: construct the report |
||
34 | #################################################################################################################### |
||
35 | @staticmethod |
||
36 | def on_get(req, resp): |
||
37 | print(req.params) |
||
38 | equipment_id = req.params.get('equipmentid') |
||
39 | period_type = req.params.get('periodtype') |
||
40 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
||
41 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
||
42 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
||
43 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
||
44 | |||
45 | ################################################################################################################ |
||
46 | # Step 1: valid parameters |
||
47 | ################################################################################################################ |
||
48 | if equipment_id is None: |
||
49 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_EQUIPMENT_ID') |
||
50 | else: |
||
51 | equipment_id = str.strip(equipment_id) |
||
52 | if not equipment_id.isdigit() or int(equipment_id) <= 0: |
||
53 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_EQUIPMENT_ID') |
||
54 | |||
55 | if period_type is None: |
||
56 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
57 | else: |
||
58 | period_type = str.strip(period_type) |
||
59 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
||
60 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
61 | |||
62 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
63 | if config.utc_offset[0] == '-': |
||
64 | timezone_offset = -timezone_offset |
||
65 | |||
66 | base_start_datetime_utc = None |
||
67 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
||
68 | base_start_datetime_local = str.strip(base_start_datetime_local) |
||
69 | try: |
||
70 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
||
71 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
72 | timedelta(minutes=timezone_offset) |
||
73 | except ValueError: |
||
74 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
75 | description="API.INVALID_BASE_PERIOD_START_DATETIME") |
||
76 | |||
77 | base_end_datetime_utc = None |
||
78 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
||
79 | base_end_datetime_local = str.strip(base_end_datetime_local) |
||
80 | try: |
||
81 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
||
82 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
83 | timedelta(minutes=timezone_offset) |
||
84 | except ValueError: |
||
85 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
86 | description="API.INVALID_BASE_PERIOD_END_DATETIME") |
||
87 | |||
88 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
||
89 | base_start_datetime_utc >= base_end_datetime_utc: |
||
90 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
91 | description='API.INVALID_BASE_PERIOD_END_DATETIME') |
||
92 | |||
93 | if reporting_start_datetime_local is None: |
||
94 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
95 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
96 | else: |
||
97 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
||
98 | try: |
||
99 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
||
100 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
101 | timedelta(minutes=timezone_offset) |
||
102 | except ValueError: |
||
103 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
104 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
105 | |||
106 | if reporting_end_datetime_local is None: |
||
107 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
108 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
109 | else: |
||
110 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
||
111 | try: |
||
112 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
||
113 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
114 | timedelta(minutes=timezone_offset) |
||
115 | except ValueError: |
||
116 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
117 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
118 | |||
119 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
||
120 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
121 | description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
||
122 | |||
123 | ################################################################################################################ |
||
124 | # Step 2: query the equipment |
||
125 | ################################################################################################################ |
||
126 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
||
127 | cursor_system = cnx_system.cursor() |
||
128 | |||
129 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
||
130 | cursor_energy = cnx_energy.cursor() |
||
131 | |||
132 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
||
133 | cursor_historical = cnx_historical.cursor() |
||
134 | |||
135 | cursor_system.execute(" SELECT id, name, cost_center_id " |
||
136 | " FROM tbl_equipments " |
||
137 | " WHERE id = %s ", (equipment_id,)) |
||
138 | row_equipment = cursor_system.fetchone() |
||
139 | if row_equipment is None: |
||
140 | if cursor_system: |
||
141 | cursor_system.close() |
||
142 | if cnx_system: |
||
143 | cnx_system.disconnect() |
||
144 | |||
145 | if cursor_energy: |
||
146 | cursor_energy.close() |
||
147 | if cnx_energy: |
||
148 | cnx_energy.disconnect() |
||
149 | |||
150 | if cnx_historical: |
||
151 | cnx_historical.close() |
||
152 | if cursor_historical: |
||
153 | cursor_historical.disconnect() |
||
154 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.EQUIPMENT_NOT_FOUND') |
||
155 | |||
156 | equipment = dict() |
||
157 | equipment['id'] = row_equipment[0] |
||
158 | equipment['name'] = row_equipment[1] |
||
159 | equipment['cost_center_id'] = row_equipment[2] |
||
160 | |||
161 | ################################################################################################################ |
||
162 | # Step 3: query input energy categories and output energy categories |
||
163 | ################################################################################################################ |
||
164 | energy_category_set_input = set() |
||
165 | energy_category_set_output = set() |
||
166 | # query input energy categories in base period |
||
167 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
168 | " FROM tbl_equipment_input_category_hourly " |
||
169 | " WHERE equipment_id = %s " |
||
170 | " AND start_datetime_utc >= %s " |
||
171 | " AND start_datetime_utc < %s ", |
||
172 | (equipment['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
173 | rows_energy_categories = cursor_energy.fetchall() |
||
174 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
175 | for row_energy_category in rows_energy_categories: |
||
176 | energy_category_set_input.add(row_energy_category[0]) |
||
177 | |||
178 | # query input energy categories in reporting period |
||
179 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
180 | " FROM tbl_equipment_input_category_hourly " |
||
181 | " WHERE equipment_id = %s " |
||
182 | " AND start_datetime_utc >= %s " |
||
183 | " AND start_datetime_utc < %s ", |
||
184 | (equipment['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
185 | rows_energy_categories = cursor_energy.fetchall() |
||
186 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
187 | for row_energy_category in rows_energy_categories: |
||
188 | energy_category_set_input.add(row_energy_category[0]) |
||
189 | |||
190 | # query output energy categories in base period |
||
191 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
192 | " FROM tbl_equipment_output_category_hourly " |
||
193 | " WHERE equipment_id = %s " |
||
194 | " AND start_datetime_utc >= %s " |
||
195 | " AND start_datetime_utc < %s ", |
||
196 | (equipment['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
197 | rows_energy_categories = cursor_energy.fetchall() |
||
198 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
199 | for row_energy_category in rows_energy_categories: |
||
200 | energy_category_set_output.add(row_energy_category[0]) |
||
201 | |||
202 | # query output energy categories in reporting period |
||
203 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
204 | " FROM tbl_equipment_output_category_hourly " |
||
205 | " WHERE equipment_id = %s " |
||
206 | " AND start_datetime_utc >= %s " |
||
207 | " AND start_datetime_utc < %s ", |
||
208 | (equipment['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
209 | rows_energy_categories = cursor_energy.fetchall() |
||
210 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
211 | for row_energy_category in rows_energy_categories: |
||
212 | energy_category_set_output.add(row_energy_category[0]) |
||
213 | |||
214 | # query properties of all energy categories above |
||
215 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
||
216 | " FROM tbl_energy_categories " |
||
217 | " ORDER BY id ", ) |
||
218 | rows_energy_categories = cursor_system.fetchall() |
||
219 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
||
220 | if cursor_system: |
||
221 | cursor_system.close() |
||
222 | if cnx_system: |
||
223 | cnx_system.disconnect() |
||
224 | |||
225 | if cursor_energy: |
||
226 | cursor_energy.close() |
||
227 | if cnx_energy: |
||
228 | cnx_energy.disconnect() |
||
229 | |||
230 | if cnx_historical: |
||
231 | cnx_historical.close() |
||
232 | if cursor_historical: |
||
233 | cursor_historical.disconnect() |
||
234 | raise falcon.HTTPError(falcon.HTTP_404, |
||
235 | title='API.NOT_FOUND', |
||
236 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
||
237 | energy_category_dict = dict() |
||
238 | for row_energy_category in rows_energy_categories: |
||
239 | if row_energy_category[0] in energy_category_set_input or \ |
||
240 | row_energy_category[0] in energy_category_set_output: |
||
241 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
||
242 | "unit_of_measure": row_energy_category[2], |
||
243 | "kgce": row_energy_category[3], |
||
244 | "kgco2e": row_energy_category[4]} |
||
245 | |||
246 | ################################################################################################################ |
||
247 | # Step 4: query associated points |
||
248 | ################################################################################################################ |
||
249 | point_list = list() |
||
250 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
||
251 | " FROM tbl_equipments e, tbl_equipments_parameters ep, tbl_points p " |
||
252 | " WHERE e.id = %s AND e.id = ep.equipment_id AND ep.parameter_type = 'point' " |
||
253 | " AND ep.point_id = p.id " |
||
254 | " ORDER BY p.id ", (equipment['id'],)) |
||
255 | rows_points = cursor_system.fetchall() |
||
256 | if rows_points is not None and len(rows_points) > 0: |
||
257 | for row in rows_points: |
||
258 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
||
259 | |||
260 | ################################################################################################################ |
||
261 | # Step 5: query base period energy input |
||
262 | ################################################################################################################ |
||
263 | base_input = dict() |
||
264 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
265 | for energy_category_id in energy_category_set_input: |
||
266 | base_input[energy_category_id] = dict() |
||
267 | base_input[energy_category_id]['timestamps'] = list() |
||
268 | base_input[energy_category_id]['values'] = list() |
||
269 | base_input[energy_category_id]['subtotal'] = Decimal(0.0) |
||
270 | |||
271 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
272 | " FROM tbl_equipment_input_category_hourly " |
||
273 | " WHERE equipment_id = %s " |
||
274 | " AND energy_category_id = %s " |
||
275 | " AND start_datetime_utc >= %s " |
||
276 | " AND start_datetime_utc < %s " |
||
277 | " ORDER BY start_datetime_utc ", |
||
278 | (equipment['id'], |
||
279 | energy_category_id, |
||
280 | base_start_datetime_utc, |
||
281 | base_end_datetime_utc)) |
||
282 | rows_equipment_hourly = cursor_energy.fetchall() |
||
283 | |||
284 | rows_equipment_periodically = utilities.aggregate_hourly_data_by_period(rows_equipment_hourly, |
||
285 | base_start_datetime_utc, |
||
286 | base_end_datetime_utc, |
||
287 | period_type) |
||
288 | for row_equipment_periodically in rows_equipment_periodically: |
||
289 | current_datetime_local = row_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
290 | timedelta(minutes=timezone_offset) |
||
291 | if period_type == 'hourly': |
||
292 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
293 | elif period_type == 'daily': |
||
294 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
295 | elif period_type == 'monthly': |
||
296 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
297 | elif period_type == 'yearly': |
||
298 | current_datetime = current_datetime_local.strftime('%Y') |
||
299 | |||
300 | actual_value = Decimal(0.0) if row_equipment_periodically[1] is None \ |
||
301 | else row_equipment_periodically[1] |
||
302 | base_input[energy_category_id]['timestamps'].append(current_datetime) |
||
303 | base_input[energy_category_id]['values'].append(actual_value) |
||
304 | base_input[energy_category_id]['subtotal'] += actual_value |
||
305 | |||
306 | ################################################################################################################ |
||
307 | # Step 6: query base period energy output |
||
308 | ################################################################################################################ |
||
309 | base_output = dict() |
||
310 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
311 | for energy_category_id in energy_category_set_output: |
||
312 | base_output[energy_category_id] = dict() |
||
313 | base_output[energy_category_id]['timestamps'] = list() |
||
314 | base_output[energy_category_id]['values'] = list() |
||
315 | base_output[energy_category_id]['subtotal'] = Decimal(0.0) |
||
316 | |||
317 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
318 | " FROM tbl_equipment_output_category_hourly " |
||
319 | " WHERE equipment_id = %s " |
||
320 | " AND energy_category_id = %s " |
||
321 | " AND start_datetime_utc >= %s " |
||
322 | " AND start_datetime_utc < %s " |
||
323 | " ORDER BY start_datetime_utc ", |
||
324 | (equipment['id'], |
||
325 | energy_category_id, |
||
326 | base_start_datetime_utc, |
||
327 | base_end_datetime_utc)) |
||
328 | rows_equipment_hourly = cursor_energy.fetchall() |
||
329 | |||
330 | rows_equipment_periodically = utilities.aggregate_hourly_data_by_period(rows_equipment_hourly, |
||
331 | base_start_datetime_utc, |
||
332 | base_end_datetime_utc, |
||
333 | period_type) |
||
334 | for row_equipment_periodically in rows_equipment_periodically: |
||
335 | current_datetime_local = row_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
336 | timedelta(minutes=timezone_offset) |
||
337 | if period_type == 'hourly': |
||
338 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
339 | elif period_type == 'daily': |
||
340 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
341 | elif period_type == 'monthly': |
||
342 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
343 | elif period_type == 'yearly': |
||
344 | current_datetime = current_datetime_local.strftime('%Y') |
||
345 | |||
346 | actual_value = Decimal(0.0) if row_equipment_periodically[1] is None \ |
||
347 | else row_equipment_periodically[1] |
||
348 | base_output[energy_category_id]['timestamps'].append(current_datetime) |
||
349 | base_output[energy_category_id]['values'].append(actual_value) |
||
350 | base_output[energy_category_id]['subtotal'] += actual_value |
||
351 | ################################################################################################################ |
||
352 | # Step 7: query reporting period energy input |
||
353 | ################################################################################################################ |
||
354 | reporting_input = dict() |
||
355 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
356 | for energy_category_id in energy_category_set_input: |
||
357 | |||
358 | reporting_input[energy_category_id] = dict() |
||
359 | reporting_input[energy_category_id]['timestamps'] = list() |
||
360 | reporting_input[energy_category_id]['values'] = list() |
||
361 | reporting_input[energy_category_id]['subtotal'] = Decimal(0.0) |
||
362 | |||
363 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
364 | " FROM tbl_equipment_input_category_hourly " |
||
365 | " WHERE equipment_id = %s " |
||
366 | " AND energy_category_id = %s " |
||
367 | " AND start_datetime_utc >= %s " |
||
368 | " AND start_datetime_utc < %s " |
||
369 | " ORDER BY start_datetime_utc ", |
||
370 | (equipment['id'], |
||
371 | energy_category_id, |
||
372 | reporting_start_datetime_utc, |
||
373 | reporting_end_datetime_utc)) |
||
374 | rows_equipment_hourly = cursor_energy.fetchall() |
||
375 | |||
376 | rows_equipment_periodically = utilities.aggregate_hourly_data_by_period(rows_equipment_hourly, |
||
377 | reporting_start_datetime_utc, |
||
378 | reporting_end_datetime_utc, |
||
379 | period_type) |
||
380 | for row_equipment_periodically in rows_equipment_periodically: |
||
381 | current_datetime_local = row_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
382 | timedelta(minutes=timezone_offset) |
||
383 | if period_type == 'hourly': |
||
384 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
385 | elif period_type == 'daily': |
||
386 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
387 | elif period_type == 'monthly': |
||
388 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
389 | elif period_type == 'yearly': |
||
390 | current_datetime = current_datetime_local.strftime('%Y') |
||
391 | |||
392 | actual_value = Decimal(0.0) if row_equipment_periodically[1] is None \ |
||
393 | else row_equipment_periodically[1] |
||
394 | reporting_input[energy_category_id]['timestamps'].append(current_datetime) |
||
395 | reporting_input[energy_category_id]['values'].append(actual_value) |
||
396 | reporting_input[energy_category_id]['subtotal'] += actual_value |
||
397 | |||
398 | ################################################################################################################ |
||
399 | # Step 8: query reporting period energy output |
||
400 | ################################################################################################################ |
||
401 | reporting_output = dict() |
||
402 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
403 | for energy_category_id in energy_category_set_output: |
||
404 | |||
405 | reporting_output[energy_category_id] = dict() |
||
406 | reporting_output[energy_category_id]['timestamps'] = list() |
||
407 | reporting_output[energy_category_id]['values'] = list() |
||
408 | reporting_output[energy_category_id]['subtotal'] = Decimal(0.0) |
||
409 | |||
410 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
411 | " FROM tbl_equipment_output_category_hourly " |
||
412 | " WHERE equipment_id = %s " |
||
413 | " AND energy_category_id = %s " |
||
414 | " AND start_datetime_utc >= %s " |
||
415 | " AND start_datetime_utc < %s " |
||
416 | " ORDER BY start_datetime_utc ", |
||
417 | (equipment['id'], |
||
418 | energy_category_id, |
||
419 | reporting_start_datetime_utc, |
||
420 | reporting_end_datetime_utc)) |
||
421 | rows_equipment_hourly = cursor_energy.fetchall() |
||
422 | |||
423 | rows_equipment_periodically = utilities.aggregate_hourly_data_by_period(rows_equipment_hourly, |
||
424 | reporting_start_datetime_utc, |
||
425 | reporting_end_datetime_utc, |
||
426 | period_type) |
||
427 | for row_equipment_periodically in rows_equipment_periodically: |
||
428 | current_datetime_local = row_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
429 | timedelta(minutes=timezone_offset) |
||
430 | if period_type == 'hourly': |
||
431 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
432 | elif period_type == 'daily': |
||
433 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
434 | elif period_type == 'monthly': |
||
435 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
436 | elif period_type == 'yearly': |
||
437 | current_datetime = current_datetime_local.strftime('%Y') |
||
438 | |||
439 | actual_value = Decimal(0.0) if row_equipment_periodically[1] is None \ |
||
440 | else row_equipment_periodically[1] |
||
441 | reporting_output[energy_category_id]['timestamps'].append(current_datetime) |
||
442 | reporting_output[energy_category_id]['values'].append(actual_value) |
||
443 | reporting_output[energy_category_id]['subtotal'] += actual_value |
||
444 | |||
445 | ################################################################################################################ |
||
446 | # Step 9: query tariff data |
||
447 | ################################################################################################################ |
||
448 | parameters_data = dict() |
||
449 | parameters_data['names'] = list() |
||
450 | parameters_data['timestamps'] = list() |
||
451 | parameters_data['values'] = list() |
||
452 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
453 | for energy_category_id in energy_category_set_input: |
||
454 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(equipment['cost_center_id'], |
||
455 | energy_category_id, |
||
456 | reporting_start_datetime_utc, |
||
457 | reporting_end_datetime_utc) |
||
458 | tariff_timestamp_list = list() |
||
459 | tariff_value_list = list() |
||
460 | for k, v in energy_category_tariff_dict.items(): |
||
461 | # convert k from utc to local |
||
462 | k = k + timedelta(minutes=timezone_offset) |
||
463 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
||
464 | tariff_value_list.append(v) |
||
465 | |||
466 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
||
467 | parameters_data['timestamps'].append(tariff_timestamp_list) |
||
468 | parameters_data['values'].append(tariff_value_list) |
||
469 | |||
470 | ################################################################################################################ |
||
471 | # Step 10: query associated sensors and points data |
||
472 | ################################################################################################################ |
||
473 | for point in point_list: |
||
474 | point_values = [] |
||
475 | point_timestamps = [] |
||
476 | if point['object_type'] == 'ANALOG_VALUE': |
||
477 | query = (" SELECT utc_date_time, actual_value " |
||
478 | " FROM tbl_analog_value " |
||
479 | " WHERE point_id = %s " |
||
480 | " AND utc_date_time BETWEEN %s AND %s " |
||
481 | " ORDER BY utc_date_time ") |
||
482 | cursor_historical.execute(query, (point['id'], |
||
483 | reporting_start_datetime_utc, |
||
484 | reporting_end_datetime_utc)) |
||
485 | rows = cursor_historical.fetchall() |
||
486 | |||
487 | if rows is not None and len(rows) > 0: |
||
488 | for row in rows: |
||
489 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
490 | timedelta(minutes=timezone_offset) |
||
491 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
492 | point_timestamps.append(current_datetime) |
||
493 | point_values.append(row[1]) |
||
494 | |||
495 | elif point['object_type'] == 'ENERGY_VALUE': |
||
496 | query = (" SELECT utc_date_time, actual_value " |
||
497 | " FROM tbl_energy_value " |
||
498 | " WHERE point_id = %s " |
||
499 | " AND utc_date_time BETWEEN %s AND %s " |
||
500 | " ORDER BY utc_date_time ") |
||
501 | cursor_historical.execute(query, (point['id'], |
||
502 | reporting_start_datetime_utc, |
||
503 | reporting_end_datetime_utc)) |
||
504 | rows = cursor_historical.fetchall() |
||
505 | |||
506 | if rows is not None and len(rows) > 0: |
||
507 | for row in rows: |
||
508 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
509 | timedelta(minutes=timezone_offset) |
||
510 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
511 | point_timestamps.append(current_datetime) |
||
512 | point_values.append(row[1]) |
||
513 | elif point['object_type'] == 'DIGITAL_VALUE': |
||
514 | query = (" SELECT utc_date_time, actual_value " |
||
515 | " FROM tbl_digital_value " |
||
516 | " WHERE point_id = %s " |
||
517 | " AND utc_date_time BETWEEN %s AND %s ") |
||
518 | cursor_historical.execute(query, (point['id'], |
||
519 | reporting_start_datetime_utc, |
||
520 | reporting_end_datetime_utc)) |
||
521 | rows = cursor_historical.fetchall() |
||
522 | |||
523 | if rows is not None and len(rows) > 0: |
||
524 | for row in rows: |
||
525 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
526 | timedelta(minutes=timezone_offset) |
||
527 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
528 | point_timestamps.append(current_datetime) |
||
529 | point_values.append(row[1]) |
||
530 | |||
531 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
||
532 | parameters_data['timestamps'].append(point_timestamps) |
||
533 | parameters_data['values'].append(point_values) |
||
534 | |||
535 | ################################################################################################################ |
||
536 | # Step 11: construct the report |
||
537 | ################################################################################################################ |
||
538 | if cursor_system: |
||
539 | cursor_system.close() |
||
540 | if cnx_system: |
||
541 | cnx_system.disconnect() |
||
542 | |||
543 | if cursor_energy: |
||
544 | cursor_energy.close() |
||
545 | if cnx_energy: |
||
546 | cnx_energy.disconnect() |
||
547 | |||
548 | result = dict() |
||
549 | |||
550 | result['equipment'] = dict() |
||
551 | result['equipment']['name'] = equipment['name'] |
||
552 | |||
553 | result['base_period_input'] = dict() |
||
554 | result['base_period_input']['names'] = list() |
||
555 | result['base_period_input']['units'] = list() |
||
556 | result['base_period_input']['timestamps'] = list() |
||
557 | result['base_period_input']['values'] = list() |
||
558 | result['base_period_input']['subtotals'] = list() |
||
559 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
560 | for energy_category_id in energy_category_set_input: |
||
561 | result['base_period_input']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
562 | result['base_period_input']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
563 | result['base_period_input']['timestamps'].append(base_input[energy_category_id]['timestamps']) |
||
564 | result['base_period_input']['values'].append(base_input[energy_category_id]['values']) |
||
565 | result['base_period_input']['subtotals'].append(base_input[energy_category_id]['subtotal']) |
||
566 | |||
567 | result['base_period_output'] = dict() |
||
568 | result['base_period_output']['names'] = list() |
||
569 | result['base_period_output']['units'] = list() |
||
570 | result['base_period_output']['timestamps'] = list() |
||
571 | result['base_period_output']['values'] = list() |
||
572 | result['base_period_output']['subtotals'] = list() |
||
573 | |||
574 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
575 | for energy_category_id in energy_category_set_output: |
||
576 | result['base_period_output']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
577 | result['base_period_output']['units'].append( |
||
578 | energy_category_dict[energy_category_id]['unit_of_measure']) |
||
579 | result['base_period_output']['timestamps'].append(base_output[energy_category_id]['timestamps']) |
||
580 | result['base_period_output']['values'].append(base_output[energy_category_id]['values']) |
||
581 | result['base_period_output']['subtotals'].append(base_output[energy_category_id]['subtotal']) |
||
582 | |||
583 | result['base_period_efficiency'] = dict() |
||
584 | result['base_period_efficiency']['names'] = list() |
||
585 | result['base_period_efficiency']['units'] = list() |
||
586 | result['base_period_efficiency']['timestamps'] = list() |
||
587 | result['base_period_efficiency']['values'] = list() |
||
588 | result['base_period_efficiency']['cumulations'] = list() |
||
589 | |||
590 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
591 | for energy_category_id_output in energy_category_set_output: |
||
592 | for energy_category_id_input in energy_category_set_input: |
||
593 | result['base_period_efficiency']['names'].append( |
||
594 | energy_category_dict[energy_category_id_output]['name'] + '/' + |
||
595 | energy_category_dict[energy_category_id_input]['name']) |
||
596 | result['base_period_efficiency']['units'].append( |
||
597 | energy_category_dict[energy_category_id_output]['unit_of_measure'] + '/' + |
||
598 | energy_category_dict[energy_category_id_input]['unit_of_measure']) |
||
599 | result['base_period_efficiency']['timestamps'].append( |
||
600 | base_output[energy_category_id_output]['timestamps']) |
||
601 | efficiency_values = list() |
||
602 | for i in range(len(base_output[energy_category_id_output]['timestamps'])): |
||
603 | efficiency_values.append((base_output[energy_category_id_output]['values'][i] / |
||
604 | base_input[energy_category_id_input]['values'][i]) |
||
605 | if base_input[energy_category_id_input]['values'][i] > Decimal(0.0) |
||
606 | else None) |
||
607 | result['base_period_efficiency']['values'].append(efficiency_values) |
||
608 | |||
609 | base_cumulation = (base_output[energy_category_id_output]['subtotal'] / |
||
610 | base_input[energy_category_id_input]['subtotal']) if \ |
||
611 | base_input[energy_category_id_input]['subtotal'] > Decimal(0.0) else None |
||
612 | result['base_period_efficiency']['cumulations'].append(base_cumulation) |
||
613 | |||
614 | result['reporting_period_input'] = dict() |
||
615 | result['reporting_period_input']['names'] = list() |
||
616 | result['reporting_period_input']['energy_category_ids'] = list() |
||
617 | result['reporting_period_input']['units'] = list() |
||
618 | result['reporting_period_input']['timestamps'] = list() |
||
619 | result['reporting_period_input']['values'] = list() |
||
620 | result['reporting_period_input']['subtotals'] = list() |
||
621 | result['reporting_period_input']['increment_rates'] = list() |
||
622 | |||
623 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
624 | for energy_category_id in energy_category_set_input: |
||
625 | result['reporting_period_input']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
626 | result['reporting_period_input']['energy_category_ids'].append(energy_category_id) |
||
627 | result['reporting_period_input']['units'].append( |
||
628 | energy_category_dict[energy_category_id]['unit_of_measure']) |
||
629 | result['reporting_period_input']['timestamps'].append( |
||
630 | reporting_input[energy_category_id]['timestamps']) |
||
631 | result['reporting_period_input']['values'].append( |
||
632 | reporting_input[energy_category_id]['values']) |
||
633 | result['reporting_period_input']['subtotals'].append( |
||
634 | reporting_input[energy_category_id]['subtotal']) |
||
635 | result['reporting_period_input']['increment_rates'].append( |
||
636 | (reporting_input[energy_category_id]['subtotal'] - |
||
637 | base_input[energy_category_id]['subtotal']) / |
||
638 | base_input[energy_category_id]['subtotal'] |
||
639 | if base_input[energy_category_id]['subtotal'] > 0.0 else None) |
||
640 | |||
641 | result['reporting_period_output'] = dict() |
||
642 | result['reporting_period_output']['names'] = list() |
||
643 | result['reporting_period_output']['energy_category_ids'] = list() |
||
644 | result['reporting_period_output']['units'] = list() |
||
645 | result['reporting_period_output']['timestamps'] = list() |
||
646 | result['reporting_period_output']['values'] = list() |
||
647 | result['reporting_period_output']['subtotals'] = list() |
||
648 | result['reporting_period_output']['increment_rates'] = list() |
||
649 | |||
650 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
651 | for energy_category_id in energy_category_set_output: |
||
652 | result['reporting_period_output']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
653 | result['reporting_period_output']['energy_category_ids'].append(energy_category_id) |
||
654 | result['reporting_period_output']['units'].append( |
||
655 | energy_category_dict[energy_category_id]['unit_of_measure']) |
||
656 | result['reporting_period_output']['timestamps'].append( |
||
657 | reporting_output[energy_category_id]['timestamps']) |
||
658 | result['reporting_period_output']['values'].append(reporting_output[energy_category_id]['values']) |
||
659 | result['reporting_period_output']['subtotals'].append(reporting_output[energy_category_id]['subtotal']) |
||
660 | result['reporting_period_output']['increment_rates'].append( |
||
661 | (reporting_output[energy_category_id]['subtotal'] - |
||
662 | base_output[energy_category_id]['subtotal']) / |
||
663 | base_output[energy_category_id]['subtotal'] |
||
664 | if base_output[energy_category_id]['subtotal'] > 0.0 else None) |
||
665 | |||
666 | result['reporting_period_efficiency'] = dict() |
||
667 | result['reporting_period_efficiency']['names'] = list() |
||
668 | result['reporting_period_efficiency']['units'] = list() |
||
669 | result['reporting_period_efficiency']['timestamps'] = list() |
||
670 | result['reporting_period_efficiency']['values'] = list() |
||
671 | result['reporting_period_efficiency']['cumulations'] = list() |
||
672 | result['reporting_period_efficiency']['increment_rates'] = list() |
||
673 | |||
674 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
675 | for energy_category_id_output in energy_category_set_output: |
||
676 | for energy_category_id_input in energy_category_set_input: |
||
677 | result['reporting_period_efficiency']['names'].append( |
||
678 | energy_category_dict[energy_category_id_output]['name'] + '/' + |
||
679 | energy_category_dict[energy_category_id_input]['name']) |
||
680 | result['reporting_period_efficiency']['units'].append( |
||
681 | energy_category_dict[energy_category_id_output]['unit_of_measure'] + '/' + |
||
682 | energy_category_dict[energy_category_id_input]['unit_of_measure']) |
||
683 | result['reporting_period_efficiency']['timestamps'].append( |
||
684 | reporting_output[energy_category_id_output]['timestamps']) |
||
685 | efficiency_values = list() |
||
686 | for i in range(len(reporting_output[energy_category_id_output]['timestamps'])): |
||
687 | efficiency_values.append((reporting_output[energy_category_id_output]['values'][i] / |
||
688 | reporting_input[energy_category_id_input]['values'][i]) |
||
689 | if reporting_input[energy_category_id_input]['values'][i] > |
||
690 | Decimal(0.0) else None) |
||
691 | result['reporting_period_efficiency']['values'].append(efficiency_values) |
||
692 | |||
693 | base_cumulation = (base_output[energy_category_id_output]['subtotal'] / |
||
694 | base_input[energy_category_id_input]['subtotal']) if \ |
||
695 | base_input[energy_category_id_input]['subtotal'] > Decimal(0.0) else None |
||
696 | |||
697 | reporting_cumulation = (reporting_output[energy_category_id_output]['subtotal'] / |
||
698 | reporting_input[energy_category_id_input]['subtotal']) if \ |
||
699 | reporting_input[energy_category_id_input]['subtotal'] > Decimal(0.0) else None |
||
700 | |||
701 | result['reporting_period_efficiency']['cumulations'].append(reporting_cumulation) |
||
702 | result['reporting_period_efficiency']['increment_rates'].append( |
||
703 | ((reporting_cumulation - base_cumulation) / base_cumulation if (base_cumulation is not None and |
||
704 | base_cumulation > Decimal(0.0)) |
||
705 | else None) |
||
706 | ) |
||
707 | |||
708 | result['parameters'] = { |
||
709 | "names": parameters_data['names'], |
||
710 | "timestamps": parameters_data['timestamps'], |
||
711 | "values": parameters_data['values'] |
||
712 | } |
||
713 | |||
714 | resp.body = json.dumps(result) |
||
715 |