| Total Complexity | 143 |
| Total Lines | 729 |
| Duplicated Lines | 98.35 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like reports.combinedequipmentefficiency often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | import falcon |
||
| 2 | import simplejson as json |
||
| 3 | import mysql.connector |
||
| 4 | import config |
||
| 5 | from datetime import datetime, timedelta, timezone |
||
| 6 | from core import utilities |
||
| 7 | from decimal import Decimal |
||
| 8 | |||
| 9 | |||
| 10 | View Code Duplication | class Reporting: |
|
|
|
|||
| 11 | @staticmethod |
||
| 12 | def __init__(): |
||
| 13 | pass |
||
| 14 | |||
| 15 | @staticmethod |
||
| 16 | def on_options(req, resp): |
||
| 17 | resp.status = falcon.HTTP_200 |
||
| 18 | |||
| 19 | #################################################################################################################### |
||
| 20 | # PROCEDURES |
||
| 21 | # Step 1: valid parameters |
||
| 22 | # Step 2: query the combined equipment |
||
| 23 | # Step 3: query associated equipments |
||
| 24 | # Step 4: query energy categories |
||
| 25 | # Step 5: query associated points |
||
| 26 | # Step 6: query base period energy input |
||
| 27 | # Step 7: query base period energy output |
||
| 28 | # Step 8: query reporting period energy input |
||
| 29 | # Step 9: query reporting period energy output |
||
| 30 | # Step 10: query tariff data |
||
| 31 | # Step 11: query associated points data |
||
| 32 | # Step 12: construct the report |
||
| 33 | #################################################################################################################### |
||
| 34 | @staticmethod |
||
| 35 | def on_get(req, resp): |
||
| 36 | print(req.params) |
||
| 37 | combined_equipment_id = req.params.get('combinedequipmentid') |
||
| 38 | period_type = req.params.get('periodtype') |
||
| 39 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
||
| 40 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
||
| 41 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
||
| 42 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
||
| 43 | |||
| 44 | ################################################################################################################ |
||
| 45 | # Step 1: valid parameters |
||
| 46 | ################################################################################################################ |
||
| 47 | if combined_equipment_id is None: |
||
| 48 | raise falcon.HTTPError(falcon.HTTP_400, |
||
| 49 | title='API.BAD_REQUEST', |
||
| 50 | description='API.INVALID_COMBINED_EQUIPMENT_ID') |
||
| 51 | else: |
||
| 52 | combined_equipment_id = str.strip(combined_equipment_id) |
||
| 53 | if not combined_equipment_id.isdigit() or int(combined_equipment_id) <= 0: |
||
| 54 | raise falcon.HTTPError(falcon.HTTP_400, |
||
| 55 | title='API.BAD_REQUEST', |
||
| 56 | description='API.INVALID_COMBINED_EQUIPMENT_ID') |
||
| 57 | |||
| 58 | if period_type is None: |
||
| 59 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
| 60 | else: |
||
| 61 | period_type = str.strip(period_type) |
||
| 62 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
||
| 63 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
||
| 64 | |||
| 65 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
| 66 | if config.utc_offset[0] == '-': |
||
| 67 | timezone_offset = -timezone_offset |
||
| 68 | |||
| 69 | base_start_datetime_utc = None |
||
| 70 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
||
| 71 | base_start_datetime_local = str.strip(base_start_datetime_local) |
||
| 72 | try: |
||
| 73 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
||
| 74 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
| 75 | timedelta(minutes=timezone_offset) |
||
| 76 | except ValueError: |
||
| 77 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 78 | description="API.INVALID_BASE_PERIOD_START_DATETIME") |
||
| 79 | |||
| 80 | base_end_datetime_utc = None |
||
| 81 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
||
| 82 | base_end_datetime_local = str.strip(base_end_datetime_local) |
||
| 83 | try: |
||
| 84 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
||
| 85 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
| 86 | timedelta(minutes=timezone_offset) |
||
| 87 | except ValueError: |
||
| 88 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 89 | description="API.INVALID_BASE_PERIOD_END_DATETIME") |
||
| 90 | |||
| 91 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
||
| 92 | base_start_datetime_utc >= base_end_datetime_utc: |
||
| 93 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 94 | description='API.INVALID_BASE_PERIOD_END_DATETIME') |
||
| 95 | |||
| 96 | if reporting_start_datetime_local is None: |
||
| 97 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 98 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
| 99 | else: |
||
| 100 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
||
| 101 | try: |
||
| 102 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
||
| 103 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
| 104 | timedelta(minutes=timezone_offset) |
||
| 105 | except ValueError: |
||
| 106 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 107 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
| 108 | |||
| 109 | if reporting_end_datetime_local is None: |
||
| 110 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 111 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
| 112 | else: |
||
| 113 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
||
| 114 | try: |
||
| 115 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
||
| 116 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
| 117 | timedelta(minutes=timezone_offset) |
||
| 118 | except ValueError: |
||
| 119 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 120 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
| 121 | |||
| 122 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
||
| 123 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
||
| 124 | description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
||
| 125 | |||
| 126 | ################################################################################################################ |
||
| 127 | # Step 2: query the combined equipment |
||
| 128 | ################################################################################################################ |
||
| 129 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
||
| 130 | cursor_system = cnx_system.cursor() |
||
| 131 | |||
| 132 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
||
| 133 | cursor_energy = cnx_energy.cursor() |
||
| 134 | |||
| 135 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
||
| 136 | cursor_historical = cnx_historical.cursor() |
||
| 137 | |||
| 138 | cursor_system.execute(" SELECT id, name, cost_center_id " |
||
| 139 | " FROM tbl_combined_equipments " |
||
| 140 | " WHERE id = %s ", (combined_equipment_id,)) |
||
| 141 | row_combined_equipment = cursor_system.fetchone() |
||
| 142 | if row_combined_equipment is None: |
||
| 143 | if cursor_system: |
||
| 144 | cursor_system.close() |
||
| 145 | if cnx_system: |
||
| 146 | cnx_system.disconnect() |
||
| 147 | |||
| 148 | if cursor_energy: |
||
| 149 | cursor_energy.close() |
||
| 150 | if cnx_energy: |
||
| 151 | cnx_energy.disconnect() |
||
| 152 | |||
| 153 | if cnx_historical: |
||
| 154 | cnx_historical.close() |
||
| 155 | if cursor_historical: |
||
| 156 | cursor_historical.disconnect() |
||
| 157 | raise falcon.HTTPError(falcon.HTTP_404, |
||
| 158 | title='API.NOT_FOUND', |
||
| 159 | description='API.COMBINED_EQUIPMENT_NOT_FOUND') |
||
| 160 | |||
| 161 | combined_equipment = dict() |
||
| 162 | combined_equipment['id'] = row_combined_equipment[0] |
||
| 163 | combined_equipment['name'] = row_combined_equipment[1] |
||
| 164 | combined_equipment['cost_center_id'] = row_combined_equipment[2] |
||
| 165 | ################################################################################################################ |
||
| 166 | # Step 3: query associated equipments |
||
| 167 | ################################################################################################################ |
||
| 168 | # todo |
||
| 169 | |||
| 170 | ################################################################################################################ |
||
| 171 | # Step 4: query input energy categories and output energy categories |
||
| 172 | ################################################################################################################ |
||
| 173 | energy_category_set_input = set() |
||
| 174 | energy_category_set_output = set() |
||
| 175 | # query input energy categories in base period |
||
| 176 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
| 177 | " FROM tbl_combined_equipment_input_category_hourly " |
||
| 178 | " WHERE combined_equipment_id = %s " |
||
| 179 | " AND start_datetime_utc >= %s " |
||
| 180 | " AND start_datetime_utc < %s ", |
||
| 181 | (combined_equipment['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
| 182 | rows_energy_categories = cursor_energy.fetchall() |
||
| 183 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
| 184 | for row_energy_category in rows_energy_categories: |
||
| 185 | energy_category_set_input.add(row_energy_category[0]) |
||
| 186 | |||
| 187 | # query input energy categories in reporting period |
||
| 188 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
| 189 | " FROM tbl_combined_equipment_input_category_hourly " |
||
| 190 | " WHERE combined_equipment_id = %s " |
||
| 191 | " AND start_datetime_utc >= %s " |
||
| 192 | " AND start_datetime_utc < %s ", |
||
| 193 | (combined_equipment['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
| 194 | rows_energy_categories = cursor_energy.fetchall() |
||
| 195 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
| 196 | for row_energy_category in rows_energy_categories: |
||
| 197 | energy_category_set_input.add(row_energy_category[0]) |
||
| 198 | |||
| 199 | # query output energy categories in base period |
||
| 200 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
| 201 | " FROM tbl_combined_equipment_output_category_hourly " |
||
| 202 | " WHERE combined_equipment_id = %s " |
||
| 203 | " AND start_datetime_utc >= %s " |
||
| 204 | " AND start_datetime_utc < %s ", |
||
| 205 | (combined_equipment['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
| 206 | rows_energy_categories = cursor_energy.fetchall() |
||
| 207 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
| 208 | for row_energy_category in rows_energy_categories: |
||
| 209 | energy_category_set_output.add(row_energy_category[0]) |
||
| 210 | |||
| 211 | # query output energy categories in reporting period |
||
| 212 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
||
| 213 | " FROM tbl_combined_equipment_output_category_hourly " |
||
| 214 | " WHERE combined_equipment_id = %s " |
||
| 215 | " AND start_datetime_utc >= %s " |
||
| 216 | " AND start_datetime_utc < %s ", |
||
| 217 | (combined_equipment['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
| 218 | rows_energy_categories = cursor_energy.fetchall() |
||
| 219 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
||
| 220 | for row_energy_category in rows_energy_categories: |
||
| 221 | energy_category_set_output.add(row_energy_category[0]) |
||
| 222 | |||
| 223 | # query properties of all energy categories above |
||
| 224 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
||
| 225 | " FROM tbl_energy_categories " |
||
| 226 | " ORDER BY id ", ) |
||
| 227 | rows_energy_categories = cursor_system.fetchall() |
||
| 228 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
||
| 229 | if cursor_system: |
||
| 230 | cursor_system.close() |
||
| 231 | if cnx_system: |
||
| 232 | cnx_system.disconnect() |
||
| 233 | |||
| 234 | if cursor_energy: |
||
| 235 | cursor_energy.close() |
||
| 236 | if cnx_energy: |
||
| 237 | cnx_energy.disconnect() |
||
| 238 | |||
| 239 | if cnx_historical: |
||
| 240 | cnx_historical.close() |
||
| 241 | if cursor_historical: |
||
| 242 | cursor_historical.disconnect() |
||
| 243 | raise falcon.HTTPError(falcon.HTTP_404, |
||
| 244 | title='API.NOT_FOUND', |
||
| 245 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
||
| 246 | energy_category_dict = dict() |
||
| 247 | for row_energy_category in rows_energy_categories: |
||
| 248 | if row_energy_category[0] in energy_category_set_input or \ |
||
| 249 | row_energy_category[0] in energy_category_set_output: |
||
| 250 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
||
| 251 | "unit_of_measure": row_energy_category[2], |
||
| 252 | "kgce": row_energy_category[3], |
||
| 253 | "kgco2e": row_energy_category[4]} |
||
| 254 | |||
| 255 | ################################################################################################################ |
||
| 256 | # Step 5: query associated points |
||
| 257 | ################################################################################################################ |
||
| 258 | point_list = list() |
||
| 259 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
||
| 260 | " FROM tbl_combined_equipments e, tbl_combined_equipments_parameters ep, tbl_points p " |
||
| 261 | " WHERE e.id = %s AND e.id = ep.combined_equipment_id AND ep.parameter_type = 'point' " |
||
| 262 | " AND ep.point_id = p.id " |
||
| 263 | " ORDER BY p.id ", (combined_equipment['id'],)) |
||
| 264 | rows_points = cursor_system.fetchall() |
||
| 265 | if rows_points is not None and len(rows_points) > 0: |
||
| 266 | for row in rows_points: |
||
| 267 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
||
| 268 | |||
| 269 | ################################################################################################################ |
||
| 270 | # Step 6: query base period energy input |
||
| 271 | ################################################################################################################ |
||
| 272 | base_input = dict() |
||
| 273 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
| 274 | for energy_category_id in energy_category_set_input: |
||
| 275 | base_input[energy_category_id] = dict() |
||
| 276 | base_input[energy_category_id]['timestamps'] = list() |
||
| 277 | base_input[energy_category_id]['values'] = list() |
||
| 278 | base_input[energy_category_id]['subtotal'] = Decimal(0.0) |
||
| 279 | |||
| 280 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
| 281 | " FROM tbl_combined_equipment_input_category_hourly " |
||
| 282 | " WHERE combined_equipment_id = %s " |
||
| 283 | " AND energy_category_id = %s " |
||
| 284 | " AND start_datetime_utc >= %s " |
||
| 285 | " AND start_datetime_utc < %s " |
||
| 286 | " ORDER BY start_datetime_utc ", |
||
| 287 | (combined_equipment['id'], |
||
| 288 | energy_category_id, |
||
| 289 | base_start_datetime_utc, |
||
| 290 | base_end_datetime_utc)) |
||
| 291 | rows_combined_equipment_hourly = cursor_energy.fetchall() |
||
| 292 | |||
| 293 | rows_combined_equipment_periodically = \ |
||
| 294 | utilities.aggregate_hourly_data_by_period(rows_combined_equipment_hourly, |
||
| 295 | base_start_datetime_utc, |
||
| 296 | base_end_datetime_utc, |
||
| 297 | period_type) |
||
| 298 | for row_combined_equipment_periodically in rows_combined_equipment_periodically: |
||
| 299 | current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
| 300 | timedelta(minutes=timezone_offset) |
||
| 301 | if period_type == 'hourly': |
||
| 302 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
| 303 | elif period_type == 'daily': |
||
| 304 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
| 305 | elif period_type == 'monthly': |
||
| 306 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
| 307 | elif period_type == 'yearly': |
||
| 308 | current_datetime = current_datetime_local.strftime('%Y') |
||
| 309 | |||
| 310 | actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \ |
||
| 311 | else row_combined_equipment_periodically[1] |
||
| 312 | base_input[energy_category_id]['timestamps'].append(current_datetime) |
||
| 313 | base_input[energy_category_id]['values'].append(actual_value) |
||
| 314 | base_input[energy_category_id]['subtotal'] += actual_value |
||
| 315 | |||
| 316 | ################################################################################################################ |
||
| 317 | # Step 7: query base period energy output |
||
| 318 | ################################################################################################################ |
||
| 319 | base_output = dict() |
||
| 320 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
| 321 | for energy_category_id in energy_category_set_output: |
||
| 322 | base_output[energy_category_id] = dict() |
||
| 323 | base_output[energy_category_id]['timestamps'] = list() |
||
| 324 | base_output[energy_category_id]['values'] = list() |
||
| 325 | base_output[energy_category_id]['subtotal'] = Decimal(0.0) |
||
| 326 | |||
| 327 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
| 328 | " FROM tbl_combined_equipment_output_category_hourly " |
||
| 329 | " WHERE combined_equipment_id = %s " |
||
| 330 | " AND energy_category_id = %s " |
||
| 331 | " AND start_datetime_utc >= %s " |
||
| 332 | " AND start_datetime_utc < %s " |
||
| 333 | " ORDER BY start_datetime_utc ", |
||
| 334 | (combined_equipment['id'], |
||
| 335 | energy_category_id, |
||
| 336 | base_start_datetime_utc, |
||
| 337 | base_end_datetime_utc)) |
||
| 338 | rows_combined_equipment_hourly = cursor_energy.fetchall() |
||
| 339 | |||
| 340 | rows_combined_equipment_periodically = \ |
||
| 341 | utilities.aggregate_hourly_data_by_period(rows_combined_equipment_hourly, |
||
| 342 | base_start_datetime_utc, |
||
| 343 | base_end_datetime_utc, |
||
| 344 | period_type) |
||
| 345 | for row_combined_equipment_periodically in rows_combined_equipment_periodically: |
||
| 346 | current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
| 347 | timedelta(minutes=timezone_offset) |
||
| 348 | if period_type == 'hourly': |
||
| 349 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
| 350 | elif period_type == 'daily': |
||
| 351 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
| 352 | elif period_type == 'monthly': |
||
| 353 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
| 354 | elif period_type == 'yearly': |
||
| 355 | current_datetime = current_datetime_local.strftime('%Y') |
||
| 356 | |||
| 357 | actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \ |
||
| 358 | else row_combined_equipment_periodically[1] |
||
| 359 | base_output[energy_category_id]['timestamps'].append(current_datetime) |
||
| 360 | base_output[energy_category_id]['values'].append(actual_value) |
||
| 361 | base_output[energy_category_id]['subtotal'] += actual_value |
||
| 362 | ################################################################################################################ |
||
| 363 | # Step 8: query reporting period energy input |
||
| 364 | ################################################################################################################ |
||
| 365 | reporting_input = dict() |
||
| 366 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
| 367 | for energy_category_id in energy_category_set_input: |
||
| 368 | |||
| 369 | reporting_input[energy_category_id] = dict() |
||
| 370 | reporting_input[energy_category_id]['timestamps'] = list() |
||
| 371 | reporting_input[energy_category_id]['values'] = list() |
||
| 372 | reporting_input[energy_category_id]['subtotal'] = Decimal(0.0) |
||
| 373 | |||
| 374 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
| 375 | " FROM tbl_combined_equipment_input_category_hourly " |
||
| 376 | " WHERE combined_equipment_id = %s " |
||
| 377 | " AND energy_category_id = %s " |
||
| 378 | " AND start_datetime_utc >= %s " |
||
| 379 | " AND start_datetime_utc < %s " |
||
| 380 | " ORDER BY start_datetime_utc ", |
||
| 381 | (combined_equipment['id'], |
||
| 382 | energy_category_id, |
||
| 383 | reporting_start_datetime_utc, |
||
| 384 | reporting_end_datetime_utc)) |
||
| 385 | rows_combined_equipment_hourly = cursor_energy.fetchall() |
||
| 386 | |||
| 387 | rows_combined_equipment_periodically = \ |
||
| 388 | utilities.aggregate_hourly_data_by_period(rows_combined_equipment_hourly, |
||
| 389 | reporting_start_datetime_utc, |
||
| 390 | reporting_end_datetime_utc, |
||
| 391 | period_type) |
||
| 392 | for row_combined_equipment_periodically in rows_combined_equipment_periodically: |
||
| 393 | current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
| 394 | timedelta(minutes=timezone_offset) |
||
| 395 | if period_type == 'hourly': |
||
| 396 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
| 397 | elif period_type == 'daily': |
||
| 398 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
| 399 | elif period_type == 'monthly': |
||
| 400 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
| 401 | elif period_type == 'yearly': |
||
| 402 | current_datetime = current_datetime_local.strftime('%Y') |
||
| 403 | |||
| 404 | actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \ |
||
| 405 | else row_combined_equipment_periodically[1] |
||
| 406 | reporting_input[energy_category_id]['timestamps'].append(current_datetime) |
||
| 407 | reporting_input[energy_category_id]['values'].append(actual_value) |
||
| 408 | reporting_input[energy_category_id]['subtotal'] += actual_value |
||
| 409 | |||
| 410 | ################################################################################################################ |
||
| 411 | # Step 9: query reporting period energy output |
||
| 412 | ################################################################################################################ |
||
| 413 | reporting_output = dict() |
||
| 414 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
| 415 | for energy_category_id in energy_category_set_output: |
||
| 416 | |||
| 417 | reporting_output[energy_category_id] = dict() |
||
| 418 | reporting_output[energy_category_id]['timestamps'] = list() |
||
| 419 | reporting_output[energy_category_id]['values'] = list() |
||
| 420 | reporting_output[energy_category_id]['subtotal'] = Decimal(0.0) |
||
| 421 | |||
| 422 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
||
| 423 | " FROM tbl_combined_equipment_output_category_hourly " |
||
| 424 | " WHERE combined_equipment_id = %s " |
||
| 425 | " AND energy_category_id = %s " |
||
| 426 | " AND start_datetime_utc >= %s " |
||
| 427 | " AND start_datetime_utc < %s " |
||
| 428 | " ORDER BY start_datetime_utc ", |
||
| 429 | (combined_equipment['id'], |
||
| 430 | energy_category_id, |
||
| 431 | reporting_start_datetime_utc, |
||
| 432 | reporting_end_datetime_utc)) |
||
| 433 | rows_combined_equipment_hourly = cursor_energy.fetchall() |
||
| 434 | |||
| 435 | rows_combined_equipment_periodically = \ |
||
| 436 | utilities.aggregate_hourly_data_by_period(rows_combined_equipment_hourly, |
||
| 437 | reporting_start_datetime_utc, |
||
| 438 | reporting_end_datetime_utc, |
||
| 439 | period_type) |
||
| 440 | for row_combined_equipment_periodically in rows_combined_equipment_periodically: |
||
| 441 | current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
| 442 | timedelta(minutes=timezone_offset) |
||
| 443 | if period_type == 'hourly': |
||
| 444 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
| 445 | elif period_type == 'daily': |
||
| 446 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
||
| 447 | elif period_type == 'monthly': |
||
| 448 | current_datetime = current_datetime_local.strftime('%Y-%m') |
||
| 449 | elif period_type == 'yearly': |
||
| 450 | current_datetime = current_datetime_local.strftime('%Y') |
||
| 451 | |||
| 452 | actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \ |
||
| 453 | else row_combined_equipment_periodically[1] |
||
| 454 | reporting_output[energy_category_id]['timestamps'].append(current_datetime) |
||
| 455 | reporting_output[energy_category_id]['values'].append(actual_value) |
||
| 456 | reporting_output[energy_category_id]['subtotal'] += actual_value |
||
| 457 | |||
| 458 | ################################################################################################################ |
||
| 459 | # Step 10: query tariff data |
||
| 460 | ################################################################################################################ |
||
| 461 | parameters_data = dict() |
||
| 462 | parameters_data['names'] = list() |
||
| 463 | parameters_data['timestamps'] = list() |
||
| 464 | parameters_data['values'] = list() |
||
| 465 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
| 466 | for energy_category_id in energy_category_set_input: |
||
| 467 | energy_category_tariff_dict = utilities.get_energy_category_tariffs( |
||
| 468 | combined_equipment['cost_center_id'], |
||
| 469 | energy_category_id, |
||
| 470 | reporting_start_datetime_utc, |
||
| 471 | reporting_end_datetime_utc) |
||
| 472 | |||
| 473 | tariff_timestamp_list = list() |
||
| 474 | tariff_value_list = list() |
||
| 475 | for k, v in energy_category_tariff_dict.items(): |
||
| 476 | # convert k from utc to local |
||
| 477 | k = k + timedelta(minutes=timezone_offset) |
||
| 478 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
||
| 479 | tariff_value_list.append(v) |
||
| 480 | |||
| 481 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
||
| 482 | parameters_data['timestamps'].append(tariff_timestamp_list) |
||
| 483 | parameters_data['values'].append(tariff_value_list) |
||
| 484 | |||
| 485 | ################################################################################################################ |
||
| 486 | # Step 11: query associated points data |
||
| 487 | ################################################################################################################ |
||
| 488 | for point in point_list: |
||
| 489 | point_values = [] |
||
| 490 | point_timestamps = [] |
||
| 491 | if point['object_type'] == 'ANALOG_VALUE': |
||
| 492 | query = (" SELECT utc_date_time, actual_value " |
||
| 493 | " FROM tbl_analog_value " |
||
| 494 | " WHERE point_id = %s " |
||
| 495 | " AND utc_date_time BETWEEN %s AND %s " |
||
| 496 | " ORDER BY utc_date_time ") |
||
| 497 | cursor_historical.execute(query, (point['id'], |
||
| 498 | reporting_start_datetime_utc, |
||
| 499 | reporting_end_datetime_utc)) |
||
| 500 | rows = cursor_historical.fetchall() |
||
| 501 | |||
| 502 | if rows is not None and len(rows) > 0: |
||
| 503 | for row in rows: |
||
| 504 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
| 505 | timedelta(minutes=timezone_offset) |
||
| 506 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
| 507 | point_timestamps.append(current_datetime) |
||
| 508 | point_values.append(row[1]) |
||
| 509 | |||
| 510 | elif point['object_type'] == 'ENERGY_VALUE': |
||
| 511 | query = (" SELECT utc_date_time, actual_value " |
||
| 512 | " FROM tbl_energy_value " |
||
| 513 | " WHERE point_id = %s " |
||
| 514 | " AND utc_date_time BETWEEN %s AND %s " |
||
| 515 | " ORDER BY utc_date_time ") |
||
| 516 | cursor_historical.execute(query, (point['id'], |
||
| 517 | reporting_start_datetime_utc, |
||
| 518 | reporting_end_datetime_utc)) |
||
| 519 | rows = cursor_historical.fetchall() |
||
| 520 | |||
| 521 | if rows is not None and len(rows) > 0: |
||
| 522 | for row in rows: |
||
| 523 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
| 524 | timedelta(minutes=timezone_offset) |
||
| 525 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
| 526 | point_timestamps.append(current_datetime) |
||
| 527 | point_values.append(row[1]) |
||
| 528 | elif point['object_type'] == 'DIGITAL_VALUE': |
||
| 529 | query = (" SELECT utc_date_time, actual_value " |
||
| 530 | " FROM tbl_digital_value " |
||
| 531 | " WHERE point_id = %s " |
||
| 532 | " AND utc_date_time BETWEEN %s AND %s ") |
||
| 533 | cursor_historical.execute(query, (point['id'], |
||
| 534 | reporting_start_datetime_utc, |
||
| 535 | reporting_end_datetime_utc)) |
||
| 536 | rows = cursor_historical.fetchall() |
||
| 537 | |||
| 538 | if rows is not None and len(rows) > 0: |
||
| 539 | for row in rows: |
||
| 540 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
||
| 541 | timedelta(minutes=timezone_offset) |
||
| 542 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
||
| 543 | point_timestamps.append(current_datetime) |
||
| 544 | point_values.append(row[1]) |
||
| 545 | |||
| 546 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
||
| 547 | parameters_data['timestamps'].append(point_timestamps) |
||
| 548 | parameters_data['values'].append(point_values) |
||
| 549 | |||
| 550 | ################################################################################################################ |
||
| 551 | # Step 12: construct the report |
||
| 552 | ################################################################################################################ |
||
| 553 | if cursor_system: |
||
| 554 | cursor_system.close() |
||
| 555 | if cnx_system: |
||
| 556 | cnx_system.disconnect() |
||
| 557 | |||
| 558 | if cursor_energy: |
||
| 559 | cursor_energy.close() |
||
| 560 | if cnx_energy: |
||
| 561 | cnx_energy.disconnect() |
||
| 562 | |||
| 563 | result = dict() |
||
| 564 | |||
| 565 | result['combined_equipment'] = dict() |
||
| 566 | result['combined_equipment']['name'] = combined_equipment['name'] |
||
| 567 | |||
| 568 | result['base_period_input'] = dict() |
||
| 569 | result['base_period_input']['names'] = list() |
||
| 570 | result['base_period_input']['units'] = list() |
||
| 571 | result['base_period_input']['timestamps'] = list() |
||
| 572 | result['base_period_input']['values'] = list() |
||
| 573 | result['base_period_input']['subtotals'] = list() |
||
| 574 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
| 575 | for energy_category_id in energy_category_set_input: |
||
| 576 | result['base_period_input']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
| 577 | result['base_period_input']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
| 578 | result['base_period_input']['timestamps'].append(base_input[energy_category_id]['timestamps']) |
||
| 579 | result['base_period_input']['values'].append(base_input[energy_category_id]['values']) |
||
| 580 | result['base_period_input']['subtotals'].append(base_input[energy_category_id]['subtotal']) |
||
| 581 | |||
| 582 | result['base_period_output'] = dict() |
||
| 583 | result['base_period_output']['names'] = list() |
||
| 584 | result['base_period_output']['units'] = list() |
||
| 585 | result['base_period_output']['timestamps'] = list() |
||
| 586 | result['base_period_output']['values'] = list() |
||
| 587 | result['base_period_output']['subtotals'] = list() |
||
| 588 | |||
| 589 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
| 590 | for energy_category_id in energy_category_set_output: |
||
| 591 | result['base_period_output']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
| 592 | result['base_period_output']['units'].append( |
||
| 593 | energy_category_dict[energy_category_id]['unit_of_measure']) |
||
| 594 | result['base_period_output']['timestamps'].append(base_output[energy_category_id]['timestamps']) |
||
| 595 | result['base_period_output']['values'].append(base_output[energy_category_id]['values']) |
||
| 596 | result['base_period_output']['subtotals'].append(base_output[energy_category_id]['subtotal']) |
||
| 597 | |||
| 598 | result['base_period_efficiency'] = dict() |
||
| 599 | result['base_period_efficiency']['names'] = list() |
||
| 600 | result['base_period_efficiency']['units'] = list() |
||
| 601 | result['base_period_efficiency']['timestamps'] = list() |
||
| 602 | result['base_period_efficiency']['values'] = list() |
||
| 603 | result['base_period_efficiency']['cumulations'] = list() |
||
| 604 | |||
| 605 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
| 606 | for energy_category_id_output in energy_category_set_output: |
||
| 607 | for energy_category_id_input in energy_category_set_input: |
||
| 608 | result['base_period_efficiency']['names'].append( |
||
| 609 | energy_category_dict[energy_category_id_output]['name'] + '/' + |
||
| 610 | energy_category_dict[energy_category_id_input]['name']) |
||
| 611 | result['base_period_efficiency']['units'].append( |
||
| 612 | energy_category_dict[energy_category_id_output]['unit_of_measure'] + '/' + |
||
| 613 | energy_category_dict[energy_category_id_input]['unit_of_measure']) |
||
| 614 | result['base_period_efficiency']['timestamps'].append( |
||
| 615 | base_output[energy_category_id_output]['timestamps']) |
||
| 616 | efficiency_values = list() |
||
| 617 | for i in range(len(base_output[energy_category_id_output]['timestamps'])): |
||
| 618 | efficiency_values.append((base_output[energy_category_id_output]['values'][i] / |
||
| 619 | base_input[energy_category_id_input]['values'][i]) |
||
| 620 | if base_input[energy_category_id_input]['values'][i] > Decimal(0.0) |
||
| 621 | else None) |
||
| 622 | result['base_period_efficiency']['values'].append(efficiency_values) |
||
| 623 | |||
| 624 | base_cumulation = (base_output[energy_category_id_output]['subtotal'] / |
||
| 625 | base_input[energy_category_id_input]['subtotal']) if \ |
||
| 626 | base_input[energy_category_id_input]['subtotal'] > Decimal(0.0) else None |
||
| 627 | result['base_period_efficiency']['cumulations'].append(base_cumulation) |
||
| 628 | |||
| 629 | result['reporting_period_input'] = dict() |
||
| 630 | result['reporting_period_input']['names'] = list() |
||
| 631 | result['reporting_period_input']['energy_category_ids'] = list() |
||
| 632 | result['reporting_period_input']['units'] = list() |
||
| 633 | result['reporting_period_input']['timestamps'] = list() |
||
| 634 | result['reporting_period_input']['values'] = list() |
||
| 635 | result['reporting_period_input']['subtotals'] = list() |
||
| 636 | result['reporting_period_input']['increment_rates'] = list() |
||
| 637 | |||
| 638 | if energy_category_set_input is not None and len(energy_category_set_input) > 0: |
||
| 639 | for energy_category_id in energy_category_set_input: |
||
| 640 | result['reporting_period_input']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
| 641 | result['reporting_period_input']['energy_category_ids'].append(energy_category_id) |
||
| 642 | result['reporting_period_input']['units'].append( |
||
| 643 | energy_category_dict[energy_category_id]['unit_of_measure']) |
||
| 644 | result['reporting_period_input']['timestamps'].append( |
||
| 645 | reporting_input[energy_category_id]['timestamps']) |
||
| 646 | result['reporting_period_input']['values'].append( |
||
| 647 | reporting_input[energy_category_id]['values']) |
||
| 648 | result['reporting_period_input']['subtotals'].append( |
||
| 649 | reporting_input[energy_category_id]['subtotal']) |
||
| 650 | result['reporting_period_input']['increment_rates'].append( |
||
| 651 | (reporting_input[energy_category_id]['subtotal'] - |
||
| 652 | base_input[energy_category_id]['subtotal']) / |
||
| 653 | base_input[energy_category_id]['subtotal'] |
||
| 654 | if base_input[energy_category_id]['subtotal'] > 0.0 else None) |
||
| 655 | |||
| 656 | result['reporting_period_output'] = dict() |
||
| 657 | result['reporting_period_output']['names'] = list() |
||
| 658 | result['reporting_period_output']['energy_category_ids'] = list() |
||
| 659 | result['reporting_period_output']['units'] = list() |
||
| 660 | result['reporting_period_output']['timestamps'] = list() |
||
| 661 | result['reporting_period_output']['values'] = list() |
||
| 662 | result['reporting_period_output']['subtotals'] = list() |
||
| 663 | result['reporting_period_output']['increment_rates'] = list() |
||
| 664 | |||
| 665 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
| 666 | for energy_category_id in energy_category_set_output: |
||
| 667 | result['reporting_period_output']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
| 668 | result['reporting_period_output']['energy_category_ids'].append(energy_category_id) |
||
| 669 | result['reporting_period_output']['units'].append( |
||
| 670 | energy_category_dict[energy_category_id]['unit_of_measure']) |
||
| 671 | result['reporting_period_output']['timestamps'].append( |
||
| 672 | reporting_output[energy_category_id]['timestamps']) |
||
| 673 | result['reporting_period_output']['values'].append(reporting_output[energy_category_id]['values']) |
||
| 674 | result['reporting_period_output']['subtotals'].append(reporting_output[energy_category_id]['subtotal']) |
||
| 675 | result['reporting_period_output']['increment_rates'].append( |
||
| 676 | (reporting_output[energy_category_id]['subtotal'] - |
||
| 677 | base_output[energy_category_id]['subtotal']) / |
||
| 678 | base_output[energy_category_id]['subtotal'] |
||
| 679 | if base_output[energy_category_id]['subtotal'] > 0.0 else None) |
||
| 680 | |||
| 681 | result['reporting_period_efficiency'] = dict() |
||
| 682 | result['reporting_period_efficiency']['names'] = list() |
||
| 683 | result['reporting_period_efficiency']['units'] = list() |
||
| 684 | result['reporting_period_efficiency']['timestamps'] = list() |
||
| 685 | result['reporting_period_efficiency']['values'] = list() |
||
| 686 | result['reporting_period_efficiency']['cumulations'] = list() |
||
| 687 | result['reporting_period_efficiency']['increment_rates'] = list() |
||
| 688 | |||
| 689 | if energy_category_set_output is not None and len(energy_category_set_output) > 0: |
||
| 690 | for energy_category_id_output in energy_category_set_output: |
||
| 691 | for energy_category_id_input in energy_category_set_input: |
||
| 692 | result['reporting_period_efficiency']['names'].append( |
||
| 693 | energy_category_dict[energy_category_id_output]['name'] + '/' + |
||
| 694 | energy_category_dict[energy_category_id_input]['name']) |
||
| 695 | result['reporting_period_efficiency']['units'].append( |
||
| 696 | energy_category_dict[energy_category_id_output]['unit_of_measure'] + '/' + |
||
| 697 | energy_category_dict[energy_category_id_input]['unit_of_measure']) |
||
| 698 | result['reporting_period_efficiency']['timestamps'].append( |
||
| 699 | reporting_output[energy_category_id_output]['timestamps']) |
||
| 700 | efficiency_values = list() |
||
| 701 | for i in range(len(reporting_output[energy_category_id_output]['timestamps'])): |
||
| 702 | efficiency_values.append((reporting_output[energy_category_id_output]['values'][i] / |
||
| 703 | reporting_input[energy_category_id_input]['values'][i]) |
||
| 704 | if reporting_input[energy_category_id_input]['values'][i] > |
||
| 705 | Decimal(0.0) else None) |
||
| 706 | result['reporting_period_efficiency']['values'].append(efficiency_values) |
||
| 707 | |||
| 708 | base_cumulation = (base_output[energy_category_id_output]['subtotal'] / |
||
| 709 | base_input[energy_category_id_input]['subtotal']) if \ |
||
| 710 | base_input[energy_category_id_input]['subtotal'] > Decimal(0.0) else None |
||
| 711 | |||
| 712 | reporting_cumulation = (reporting_output[energy_category_id_output]['subtotal'] / |
||
| 713 | reporting_input[energy_category_id_input]['subtotal']) if \ |
||
| 714 | reporting_input[energy_category_id_input]['subtotal'] > Decimal(0.0) else None |
||
| 715 | |||
| 716 | result['reporting_period_efficiency']['cumulations'].append(reporting_cumulation) |
||
| 717 | result['reporting_period_efficiency']['increment_rates'].append( |
||
| 718 | ((reporting_cumulation - base_cumulation) / base_cumulation if (base_cumulation > Decimal(0.0)) |
||
| 719 | else None) |
||
| 720 | ) |
||
| 721 | |||
| 722 | result['parameters'] = { |
||
| 723 | "names": parameters_data['names'], |
||
| 724 | "timestamps": parameters_data['timestamps'], |
||
| 725 | "values": parameters_data['values'] |
||
| 726 | } |
||
| 727 | |||
| 728 | resp.body = json.dumps(result) |
||
| 729 |