1
|
|
|
import falcon |
2
|
|
|
import simplejson as json |
3
|
|
|
import mysql.connector |
4
|
|
|
import config |
5
|
|
|
from datetime import datetime, timedelta, timezone |
6
|
|
|
|
7
|
|
|
import excelexporters.storestatistics |
8
|
|
|
from core import utilities |
9
|
|
|
from decimal import Decimal |
10
|
|
|
|
11
|
|
|
|
12
|
|
View Code Duplication |
class Reporting: |
|
|
|
|
13
|
|
|
@staticmethod |
14
|
|
|
def __init__(): |
15
|
|
|
pass |
16
|
|
|
|
17
|
|
|
@staticmethod |
18
|
|
|
def on_options(req, resp): |
19
|
|
|
resp.status = falcon.HTTP_200 |
20
|
|
|
|
21
|
|
|
#################################################################################################################### |
22
|
|
|
# PROCEDURES |
23
|
|
|
# Step 1: valid parameters |
24
|
|
|
# Step 2: query the store |
25
|
|
|
# Step 3: query energy categories |
26
|
|
|
# Step 4: query associated sensors |
27
|
|
|
# Step 5: query associated points |
28
|
|
|
# Step 6: query base period energy input |
29
|
|
|
# Step 7: query reporting period energy input |
30
|
|
|
# Step 8: query tariff data |
31
|
|
|
# Step 9: query associated sensors and points data |
32
|
|
|
# Step 10: construct the report |
33
|
|
|
#################################################################################################################### |
34
|
|
|
@staticmethod |
35
|
|
|
def on_get(req, resp): |
36
|
|
|
print(req.params) |
37
|
|
|
store_id = req.params.get('storeid') |
38
|
|
|
period_type = req.params.get('periodtype') |
39
|
|
|
base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
40
|
|
|
base_end_datetime_local = req.params.get('baseperiodenddatetime') |
41
|
|
|
reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
42
|
|
|
reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
43
|
|
|
|
44
|
|
|
################################################################################################################ |
45
|
|
|
# Step 1: valid parameters |
46
|
|
|
################################################################################################################ |
47
|
|
|
if store_id is None: |
48
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
49
|
|
|
else: |
50
|
|
|
store_id = str.strip(store_id) |
51
|
|
|
if not store_id.isdigit() or int(store_id) <= 0: |
52
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
53
|
|
|
|
54
|
|
|
if period_type is None: |
55
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
56
|
|
|
else: |
57
|
|
|
period_type = str.strip(period_type) |
58
|
|
|
if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
59
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
60
|
|
|
|
61
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
62
|
|
|
if config.utc_offset[0] == '-': |
63
|
|
|
timezone_offset = -timezone_offset |
64
|
|
|
|
65
|
|
|
base_start_datetime_utc = None |
66
|
|
|
if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
67
|
|
|
base_start_datetime_local = str.strip(base_start_datetime_local) |
68
|
|
|
try: |
69
|
|
|
base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
70
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
71
|
|
|
timedelta(minutes=timezone_offset) |
72
|
|
|
except ValueError: |
73
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
74
|
|
|
description="API.INVALID_BASE_PERIOD_START_DATETIME") |
75
|
|
|
|
76
|
|
|
base_end_datetime_utc = None |
77
|
|
|
if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
78
|
|
|
base_end_datetime_local = str.strip(base_end_datetime_local) |
79
|
|
|
try: |
80
|
|
|
base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
81
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
82
|
|
|
timedelta(minutes=timezone_offset) |
83
|
|
|
except ValueError: |
84
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
85
|
|
|
description="API.INVALID_BASE_PERIOD_END_DATETIME") |
86
|
|
|
|
87
|
|
|
if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
88
|
|
|
base_start_datetime_utc >= base_end_datetime_utc: |
89
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
90
|
|
|
description='API.INVALID_BASE_PERIOD_END_DATETIME') |
91
|
|
|
|
92
|
|
|
if reporting_start_datetime_local is None: |
93
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
94
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
95
|
|
|
else: |
96
|
|
|
reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
97
|
|
|
try: |
98
|
|
|
reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
99
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
100
|
|
|
timedelta(minutes=timezone_offset) |
101
|
|
|
except ValueError: |
102
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
103
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
104
|
|
|
|
105
|
|
|
if reporting_end_datetime_local is None: |
106
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
107
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
108
|
|
|
else: |
109
|
|
|
reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
110
|
|
|
try: |
111
|
|
|
reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
112
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
113
|
|
|
timedelta(minutes=timezone_offset) |
114
|
|
|
except ValueError: |
115
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
116
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
117
|
|
|
|
118
|
|
|
if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
119
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
120
|
|
|
description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
121
|
|
|
|
122
|
|
|
################################################################################################################ |
123
|
|
|
# Step 2: query the store |
124
|
|
|
################################################################################################################ |
125
|
|
|
cnx_system = mysql.connector.connect(**config.myems_system_db) |
126
|
|
|
cursor_system = cnx_system.cursor() |
127
|
|
|
|
128
|
|
|
cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
129
|
|
|
cursor_energy = cnx_energy.cursor() |
130
|
|
|
|
131
|
|
|
cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
132
|
|
|
cursor_historical = cnx_historical.cursor() |
133
|
|
|
|
134
|
|
|
cursor_system.execute(" SELECT id, name, area, cost_center_id " |
135
|
|
|
" FROM tbl_stores " |
136
|
|
|
" WHERE id = %s ", (store_id,)) |
137
|
|
|
row_store = cursor_system.fetchone() |
138
|
|
|
if row_store is None: |
139
|
|
|
if cursor_system: |
140
|
|
|
cursor_system.close() |
141
|
|
|
if cnx_system: |
142
|
|
|
cnx_system.disconnect() |
143
|
|
|
|
144
|
|
|
if cursor_energy: |
145
|
|
|
cursor_energy.close() |
146
|
|
|
if cnx_energy: |
147
|
|
|
cnx_energy.disconnect() |
148
|
|
|
|
149
|
|
|
if cnx_historical: |
150
|
|
|
cnx_historical.close() |
151
|
|
|
if cursor_historical: |
152
|
|
|
cursor_historical.disconnect() |
153
|
|
|
raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.STORE_NOT_FOUND') |
154
|
|
|
|
155
|
|
|
store = dict() |
156
|
|
|
store['id'] = row_store[0] |
157
|
|
|
store['name'] = row_store[1] |
158
|
|
|
store['area'] = row_store[2] |
159
|
|
|
store['cost_center_id'] = row_store[3] |
160
|
|
|
|
161
|
|
|
################################################################################################################ |
162
|
|
|
# Step 3: query energy categories |
163
|
|
|
################################################################################################################ |
164
|
|
|
energy_category_set = set() |
165
|
|
|
# query energy categories in base period |
166
|
|
|
cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
167
|
|
|
" FROM tbl_store_input_category_hourly " |
168
|
|
|
" WHERE store_id = %s " |
169
|
|
|
" AND start_datetime_utc >= %s " |
170
|
|
|
" AND start_datetime_utc < %s ", |
171
|
|
|
(store['id'], base_start_datetime_utc, base_end_datetime_utc)) |
172
|
|
|
rows_energy_categories = cursor_energy.fetchall() |
173
|
|
|
if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
174
|
|
|
for row_energy_category in rows_energy_categories: |
175
|
|
|
energy_category_set.add(row_energy_category[0]) |
176
|
|
|
|
177
|
|
|
# query energy categories in reporting period |
178
|
|
|
cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
179
|
|
|
" FROM tbl_store_input_category_hourly " |
180
|
|
|
" WHERE store_id = %s " |
181
|
|
|
" AND start_datetime_utc >= %s " |
182
|
|
|
" AND start_datetime_utc < %s ", |
183
|
|
|
(store['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
184
|
|
|
rows_energy_categories = cursor_energy.fetchall() |
185
|
|
|
if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
186
|
|
|
for row_energy_category in rows_energy_categories: |
187
|
|
|
energy_category_set.add(row_energy_category[0]) |
188
|
|
|
|
189
|
|
|
# query all energy categories in base period and reporting period |
190
|
|
|
cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
191
|
|
|
" FROM tbl_energy_categories " |
192
|
|
|
" ORDER BY id ", ) |
193
|
|
|
rows_energy_categories = cursor_system.fetchall() |
194
|
|
|
if rows_energy_categories is None or len(rows_energy_categories) == 0: |
195
|
|
|
if cursor_system: |
196
|
|
|
cursor_system.close() |
197
|
|
|
if cnx_system: |
198
|
|
|
cnx_system.disconnect() |
199
|
|
|
|
200
|
|
|
if cursor_energy: |
201
|
|
|
cursor_energy.close() |
202
|
|
|
if cnx_energy: |
203
|
|
|
cnx_energy.disconnect() |
204
|
|
|
|
205
|
|
|
if cnx_historical: |
206
|
|
|
cnx_historical.close() |
207
|
|
|
if cursor_historical: |
208
|
|
|
cursor_historical.disconnect() |
209
|
|
|
raise falcon.HTTPError(falcon.HTTP_404, |
210
|
|
|
title='API.NOT_FOUND', |
211
|
|
|
description='API.ENERGY_CATEGORY_NOT_FOUND') |
212
|
|
|
energy_category_dict = dict() |
213
|
|
|
for row_energy_category in rows_energy_categories: |
214
|
|
|
if row_energy_category[0] in energy_category_set: |
215
|
|
|
energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
216
|
|
|
"unit_of_measure": row_energy_category[2], |
217
|
|
|
"kgce": row_energy_category[3], |
218
|
|
|
"kgco2e": row_energy_category[4]} |
219
|
|
|
|
220
|
|
|
################################################################################################################ |
221
|
|
|
# Step 4: query associated sensors |
222
|
|
|
################################################################################################################ |
223
|
|
|
point_list = list() |
224
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
225
|
|
|
" FROM tbl_stores st, tbl_sensors se, tbl_stores_sensors ss, " |
226
|
|
|
" tbl_points p, tbl_sensors_points sp " |
227
|
|
|
" WHERE st.id = %s AND st.id = ss.store_id AND ss.sensor_id = se.id " |
228
|
|
|
" AND se.id = sp.sensor_id AND sp.point_id = p.id " |
229
|
|
|
" ORDER BY p.id ", (store['id'],)) |
230
|
|
|
rows_points = cursor_system.fetchall() |
231
|
|
|
if rows_points is not None and len(rows_points) > 0: |
232
|
|
|
for row in rows_points: |
233
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
234
|
|
|
|
235
|
|
|
################################################################################################################ |
236
|
|
|
# Step 5: query associated points |
237
|
|
|
################################################################################################################ |
238
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
239
|
|
|
" FROM tbl_stores s, tbl_stores_points sp, tbl_points p " |
240
|
|
|
" WHERE s.id = %s AND s.id = sp.store_id AND sp.point_id = p.id " |
241
|
|
|
" ORDER BY p.id ", (store['id'],)) |
242
|
|
|
rows_points = cursor_system.fetchall() |
243
|
|
|
if rows_points is not None and len(rows_points) > 0: |
244
|
|
|
for row in rows_points: |
245
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
246
|
|
|
|
247
|
|
|
################################################################################################################ |
248
|
|
|
# Step 6: query base period energy input |
249
|
|
|
################################################################################################################ |
250
|
|
|
base = dict() |
251
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
252
|
|
|
for energy_category_id in energy_category_set: |
253
|
|
|
base[energy_category_id] = dict() |
254
|
|
|
base[energy_category_id]['timestamps'] = list() |
255
|
|
|
base[energy_category_id]['values'] = list() |
256
|
|
|
base[energy_category_id]['subtotal'] = Decimal(0.0) |
257
|
|
|
base[energy_category_id]['mean'] = None |
258
|
|
|
base[energy_category_id]['median'] = None |
259
|
|
|
base[energy_category_id]['minimum'] = None |
260
|
|
|
base[energy_category_id]['maximum'] = None |
261
|
|
|
base[energy_category_id]['stdev'] = None |
262
|
|
|
base[energy_category_id]['variance'] = None |
263
|
|
|
|
264
|
|
|
cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
265
|
|
|
" FROM tbl_store_input_category_hourly " |
266
|
|
|
" WHERE store_id = %s " |
267
|
|
|
" AND energy_category_id = %s " |
268
|
|
|
" AND start_datetime_utc >= %s " |
269
|
|
|
" AND start_datetime_utc < %s " |
270
|
|
|
" ORDER BY start_datetime_utc ", |
271
|
|
|
(store['id'], |
272
|
|
|
energy_category_id, |
273
|
|
|
base_start_datetime_utc, |
274
|
|
|
base_end_datetime_utc)) |
275
|
|
|
rows_store_hourly = cursor_energy.fetchall() |
276
|
|
|
|
277
|
|
|
rows_store_periodically, \ |
278
|
|
|
base[energy_category_id]['mean'], \ |
279
|
|
|
base[energy_category_id]['median'], \ |
280
|
|
|
base[energy_category_id]['minimum'], \ |
281
|
|
|
base[energy_category_id]['maximum'], \ |
282
|
|
|
base[energy_category_id]['stdev'], \ |
283
|
|
|
base[energy_category_id]['variance'] = \ |
284
|
|
|
utilities.statistics_hourly_data_by_period(rows_store_hourly, |
285
|
|
|
base_start_datetime_utc, |
286
|
|
|
base_end_datetime_utc, |
287
|
|
|
period_type) |
288
|
|
|
|
289
|
|
|
for row_store_periodically in rows_store_periodically: |
290
|
|
|
current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
291
|
|
|
timedelta(minutes=timezone_offset) |
292
|
|
|
if period_type == 'hourly': |
293
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
294
|
|
|
elif period_type == 'daily': |
295
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
296
|
|
|
elif period_type == 'monthly': |
297
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m') |
298
|
|
|
elif period_type == 'yearly': |
299
|
|
|
current_datetime = current_datetime_local.strftime('%Y') |
300
|
|
|
|
301
|
|
|
actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1] |
302
|
|
|
base[energy_category_id]['timestamps'].append(current_datetime) |
|
|
|
|
303
|
|
|
base[energy_category_id]['values'].append(actual_value) |
304
|
|
|
base[energy_category_id]['subtotal'] += actual_value |
305
|
|
|
|
306
|
|
|
################################################################################################################ |
307
|
|
|
# Step 7: query reporting period energy input |
308
|
|
|
################################################################################################################ |
309
|
|
|
reporting = dict() |
310
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
311
|
|
|
for energy_category_id in energy_category_set: |
312
|
|
|
reporting[energy_category_id] = dict() |
313
|
|
|
reporting[energy_category_id]['timestamps'] = list() |
314
|
|
|
reporting[energy_category_id]['values'] = list() |
315
|
|
|
reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
316
|
|
|
reporting[energy_category_id]['mean'] = None |
317
|
|
|
reporting[energy_category_id]['median'] = None |
318
|
|
|
reporting[energy_category_id]['minimum'] = None |
319
|
|
|
reporting[energy_category_id]['maximum'] = None |
320
|
|
|
reporting[energy_category_id]['stdev'] = None |
321
|
|
|
reporting[energy_category_id]['variance'] = None |
322
|
|
|
|
323
|
|
|
cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
324
|
|
|
" FROM tbl_store_input_category_hourly " |
325
|
|
|
" WHERE store_id = %s " |
326
|
|
|
" AND energy_category_id = %s " |
327
|
|
|
" AND start_datetime_utc >= %s " |
328
|
|
|
" AND start_datetime_utc < %s " |
329
|
|
|
" ORDER BY start_datetime_utc ", |
330
|
|
|
(store['id'], |
331
|
|
|
energy_category_id, |
332
|
|
|
reporting_start_datetime_utc, |
333
|
|
|
reporting_end_datetime_utc)) |
334
|
|
|
rows_store_hourly = cursor_energy.fetchall() |
335
|
|
|
|
336
|
|
|
rows_store_periodically, \ |
337
|
|
|
reporting[energy_category_id]['mean'], \ |
338
|
|
|
reporting[energy_category_id]['median'], \ |
339
|
|
|
reporting[energy_category_id]['minimum'], \ |
340
|
|
|
reporting[energy_category_id]['maximum'], \ |
341
|
|
|
reporting[energy_category_id]['stdev'], \ |
342
|
|
|
reporting[energy_category_id]['variance'] = \ |
343
|
|
|
utilities.statistics_hourly_data_by_period(rows_store_hourly, |
344
|
|
|
reporting_start_datetime_utc, |
345
|
|
|
reporting_end_datetime_utc, |
346
|
|
|
period_type) |
347
|
|
|
|
348
|
|
|
for row_store_periodically in rows_store_periodically: |
349
|
|
|
current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
350
|
|
|
timedelta(minutes=timezone_offset) |
351
|
|
|
if period_type == 'hourly': |
352
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
353
|
|
|
elif period_type == 'daily': |
354
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
355
|
|
|
elif period_type == 'monthly': |
356
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m') |
357
|
|
|
elif period_type == 'yearly': |
358
|
|
|
current_datetime = current_datetime_local.strftime('%Y') |
359
|
|
|
|
360
|
|
|
actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1] |
361
|
|
|
reporting[energy_category_id]['timestamps'].append(current_datetime) |
362
|
|
|
reporting[energy_category_id]['values'].append(actual_value) |
363
|
|
|
reporting[energy_category_id]['subtotal'] += actual_value |
364
|
|
|
|
365
|
|
|
################################################################################################################ |
366
|
|
|
# Step 8: query tariff data |
367
|
|
|
################################################################################################################ |
368
|
|
|
parameters_data = dict() |
369
|
|
|
parameters_data['names'] = list() |
370
|
|
|
parameters_data['timestamps'] = list() |
371
|
|
|
parameters_data['values'] = list() |
372
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
373
|
|
|
for energy_category_id in energy_category_set: |
374
|
|
|
energy_category_tariff_dict = utilities.get_energy_category_tariffs(store['cost_center_id'], |
375
|
|
|
energy_category_id, |
376
|
|
|
reporting_start_datetime_utc, |
377
|
|
|
reporting_end_datetime_utc) |
378
|
|
|
tariff_timestamp_list = list() |
379
|
|
|
tariff_value_list = list() |
380
|
|
|
for k, v in energy_category_tariff_dict.items(): |
381
|
|
|
# convert k from utc to local |
382
|
|
|
k = k + timedelta(minutes=timezone_offset) |
383
|
|
|
tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
384
|
|
|
tariff_value_list.append(v) |
385
|
|
|
|
386
|
|
|
parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
387
|
|
|
parameters_data['timestamps'].append(tariff_timestamp_list) |
388
|
|
|
parameters_data['values'].append(tariff_value_list) |
389
|
|
|
|
390
|
|
|
################################################################################################################ |
391
|
|
|
# Step 9: query associated sensors and points data |
392
|
|
|
################################################################################################################ |
393
|
|
|
for point in point_list: |
394
|
|
|
point_values = [] |
395
|
|
|
point_timestamps = [] |
396
|
|
|
if point['object_type'] == 'ANALOG_VALUE': |
397
|
|
|
query = (" SELECT utc_date_time, actual_value " |
398
|
|
|
" FROM tbl_analog_value " |
399
|
|
|
" WHERE point_id = %s " |
400
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
401
|
|
|
" ORDER BY utc_date_time ") |
402
|
|
|
cursor_historical.execute(query, (point['id'], |
403
|
|
|
reporting_start_datetime_utc, |
404
|
|
|
reporting_end_datetime_utc)) |
405
|
|
|
rows = cursor_historical.fetchall() |
406
|
|
|
|
407
|
|
|
if rows is not None and len(rows) > 0: |
408
|
|
|
for row in rows: |
409
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
410
|
|
|
timedelta(minutes=timezone_offset) |
411
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
412
|
|
|
point_timestamps.append(current_datetime) |
413
|
|
|
point_values.append(row[1]) |
414
|
|
|
|
415
|
|
|
elif point['object_type'] == 'ENERGY_VALUE': |
416
|
|
|
query = (" SELECT utc_date_time, actual_value " |
417
|
|
|
" FROM tbl_energy_value " |
418
|
|
|
" WHERE point_id = %s " |
419
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
420
|
|
|
" ORDER BY utc_date_time ") |
421
|
|
|
cursor_historical.execute(query, (point['id'], |
422
|
|
|
reporting_start_datetime_utc, |
423
|
|
|
reporting_end_datetime_utc)) |
424
|
|
|
rows = cursor_historical.fetchall() |
425
|
|
|
|
426
|
|
|
if rows is not None and len(rows) > 0: |
427
|
|
|
for row in rows: |
428
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
429
|
|
|
timedelta(minutes=timezone_offset) |
430
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
431
|
|
|
point_timestamps.append(current_datetime) |
432
|
|
|
point_values.append(row[1]) |
433
|
|
|
elif point['object_type'] == 'DIGITAL_VALUE': |
434
|
|
|
query = (" SELECT utc_date_time, actual_value " |
435
|
|
|
" FROM tbl_digital_value " |
436
|
|
|
" WHERE point_id = %s " |
437
|
|
|
" AND utc_date_time BETWEEN %s AND %s ") |
438
|
|
|
cursor_historical.execute(query, (point['id'], |
439
|
|
|
reporting_start_datetime_utc, |
440
|
|
|
reporting_end_datetime_utc)) |
441
|
|
|
rows = cursor_historical.fetchall() |
442
|
|
|
|
443
|
|
|
if rows is not None and len(rows) > 0: |
444
|
|
|
for row in rows: |
445
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
446
|
|
|
timedelta(minutes=timezone_offset) |
447
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
448
|
|
|
point_timestamps.append(current_datetime) |
449
|
|
|
point_values.append(row[1]) |
450
|
|
|
|
451
|
|
|
parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
452
|
|
|
parameters_data['timestamps'].append(point_timestamps) |
453
|
|
|
parameters_data['values'].append(point_values) |
454
|
|
|
|
455
|
|
|
################################################################################################################ |
456
|
|
|
# Step 10: construct the report |
457
|
|
|
################################################################################################################ |
458
|
|
|
if cursor_system: |
459
|
|
|
cursor_system.close() |
460
|
|
|
if cnx_system: |
461
|
|
|
cnx_system.disconnect() |
462
|
|
|
|
463
|
|
|
if cursor_energy: |
464
|
|
|
cursor_energy.close() |
465
|
|
|
if cnx_energy: |
466
|
|
|
cnx_energy.disconnect() |
467
|
|
|
|
468
|
|
|
result = dict() |
469
|
|
|
|
470
|
|
|
result['store'] = dict() |
471
|
|
|
result['store']['name'] = store['name'] |
472
|
|
|
result['store']['area'] = store['area'] |
473
|
|
|
|
474
|
|
|
result['base_period'] = dict() |
475
|
|
|
result['base_period']['names'] = list() |
476
|
|
|
result['base_period']['units'] = list() |
477
|
|
|
result['base_period']['timestamps'] = list() |
478
|
|
|
result['base_period']['values'] = list() |
479
|
|
|
result['base_period']['subtotals'] = list() |
480
|
|
|
result['base_period']['means'] = list() |
481
|
|
|
result['base_period']['medians'] = list() |
482
|
|
|
result['base_period']['minimums'] = list() |
483
|
|
|
result['base_period']['maximums'] = list() |
484
|
|
|
result['base_period']['stdevs'] = list() |
485
|
|
|
result['base_period']['variances'] = list() |
486
|
|
|
|
487
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
488
|
|
|
for energy_category_id in energy_category_set: |
489
|
|
|
result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
490
|
|
|
result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
491
|
|
|
result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
492
|
|
|
result['base_period']['values'].append(base[energy_category_id]['values']) |
493
|
|
|
result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
494
|
|
|
result['base_period']['means'].append(base[energy_category_id]['mean']) |
495
|
|
|
result['base_period']['medians'].append(base[energy_category_id]['median']) |
496
|
|
|
result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
497
|
|
|
result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
498
|
|
|
result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
499
|
|
|
result['base_period']['variances'].append(base[energy_category_id]['variance']) |
500
|
|
|
|
501
|
|
|
result['reporting_period'] = dict() |
502
|
|
|
result['reporting_period']['names'] = list() |
503
|
|
|
result['reporting_period']['energy_category_ids'] = list() |
504
|
|
|
result['reporting_period']['units'] = list() |
505
|
|
|
result['reporting_period']['timestamps'] = list() |
506
|
|
|
result['reporting_period']['values'] = list() |
507
|
|
|
result['reporting_period']['subtotals'] = list() |
508
|
|
|
result['reporting_period']['means'] = list() |
509
|
|
|
result['reporting_period']['means_per_unit_area'] = list() |
510
|
|
|
result['reporting_period']['means_increment_rate'] = list() |
511
|
|
|
result['reporting_period']['medians'] = list() |
512
|
|
|
result['reporting_period']['medians_per_unit_area'] = list() |
513
|
|
|
result['reporting_period']['medians_increment_rate'] = list() |
514
|
|
|
result['reporting_period']['minimums'] = list() |
515
|
|
|
result['reporting_period']['minimums_per_unit_area'] = list() |
516
|
|
|
result['reporting_period']['minimums_increment_rate'] = list() |
517
|
|
|
result['reporting_period']['maximums'] = list() |
518
|
|
|
result['reporting_period']['maximums_per_unit_area'] = list() |
519
|
|
|
result['reporting_period']['maximums_increment_rate'] = list() |
520
|
|
|
result['reporting_period']['stdevs'] = list() |
521
|
|
|
result['reporting_period']['stdevs_per_unit_area'] = list() |
522
|
|
|
result['reporting_period']['stdevs_increment_rate'] = list() |
523
|
|
|
result['reporting_period']['variances'] = list() |
524
|
|
|
result['reporting_period']['variances_per_unit_area'] = list() |
525
|
|
|
result['reporting_period']['variances_increment_rate'] = list() |
526
|
|
|
|
527
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
528
|
|
|
for energy_category_id in energy_category_set: |
529
|
|
|
result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
530
|
|
|
result['reporting_period']['energy_category_ids'].append(energy_category_id) |
531
|
|
|
result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
532
|
|
|
result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
533
|
|
|
result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
534
|
|
|
result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
535
|
|
|
result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
536
|
|
|
result['reporting_period']['means_per_unit_area'].append( |
537
|
|
|
reporting[energy_category_id]['mean'] / store['area'] |
538
|
|
|
if reporting[energy_category_id]['mean'] is not None and |
539
|
|
|
store['area'] is not None and |
540
|
|
|
store['area'] > Decimal(0.0) |
541
|
|
|
else None) |
542
|
|
|
result['reporting_period']['means_increment_rate'].append( |
543
|
|
|
(reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
544
|
|
|
base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
545
|
|
|
base[energy_category_id]['mean'] > Decimal(0.0)) |
546
|
|
|
else None) |
547
|
|
|
result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
548
|
|
|
result['reporting_period']['medians_per_unit_area'].append( |
549
|
|
|
reporting[energy_category_id]['median'] / store['area'] |
550
|
|
|
if reporting[energy_category_id]['median'] is not None and |
551
|
|
|
store['area'] is not None and |
552
|
|
|
store['area'] > Decimal(0.0) |
553
|
|
|
else None) |
554
|
|
|
result['reporting_period']['medians_increment_rate'].append( |
555
|
|
|
(reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
556
|
|
|
base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
557
|
|
|
base[energy_category_id]['median'] > Decimal(0.0)) |
558
|
|
|
else None) |
559
|
|
|
result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
560
|
|
|
result['reporting_period']['minimums_per_unit_area'].append( |
561
|
|
|
reporting[energy_category_id]['minimum'] / store['area'] |
562
|
|
|
if reporting[energy_category_id]['minimum'] is not None and |
563
|
|
|
store['area'] is not None and |
564
|
|
|
store['area'] > Decimal(0.0) |
565
|
|
|
else None) |
566
|
|
|
result['reporting_period']['minimums_increment_rate'].append( |
567
|
|
|
(reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
568
|
|
|
base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
569
|
|
|
base[energy_category_id]['minimum'] > Decimal(0.0)) |
570
|
|
|
else None) |
571
|
|
|
result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
572
|
|
|
result['reporting_period']['maximums_per_unit_area'].append( |
573
|
|
|
reporting[energy_category_id]['maximum'] / store['area'] |
574
|
|
|
if reporting[energy_category_id]['maximum'] is not None and |
575
|
|
|
store['area'] is not None and |
576
|
|
|
store['area'] > Decimal(0.0) |
577
|
|
|
else None) |
578
|
|
|
result['reporting_period']['maximums_increment_rate'].append( |
579
|
|
|
(reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
580
|
|
|
base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
581
|
|
|
base[energy_category_id]['maximum'] > Decimal(0.0)) |
582
|
|
|
else None) |
583
|
|
|
result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
584
|
|
|
result['reporting_period']['stdevs_per_unit_area'].append( |
585
|
|
|
reporting[energy_category_id]['stdev'] / store['area'] |
586
|
|
|
if reporting[energy_category_id]['stdev'] is not None and |
587
|
|
|
store['area'] is not None and |
588
|
|
|
store['area'] > Decimal(0.0) |
589
|
|
|
else None) |
590
|
|
|
result['reporting_period']['stdevs_increment_rate'].append( |
591
|
|
|
(reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
592
|
|
|
base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
593
|
|
|
base[energy_category_id]['stdev'] > Decimal(0.0)) |
594
|
|
|
else None) |
595
|
|
|
result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
596
|
|
|
result['reporting_period']['variances_per_unit_area'].append( |
597
|
|
|
reporting[energy_category_id]['variance'] / store['area'] |
598
|
|
|
if reporting[energy_category_id]['variance'] is not None and |
599
|
|
|
store['area'] is not None and |
600
|
|
|
store['area'] > Decimal(0.0) |
601
|
|
|
else None) |
602
|
|
|
result['reporting_period']['variances_increment_rate'].append( |
603
|
|
|
(reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
604
|
|
|
base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
605
|
|
|
base[energy_category_id]['variance'] > Decimal(0.0)) |
606
|
|
|
else None) |
607
|
|
|
|
608
|
|
|
result['parameters'] = { |
609
|
|
|
"names": parameters_data['names'], |
610
|
|
|
"timestamps": parameters_data['timestamps'], |
611
|
|
|
"values": parameters_data['values'] |
612
|
|
|
} |
613
|
|
|
|
614
|
|
|
# export result to Excel file and then encode the file to base64 string |
615
|
|
|
result['excel_bytes_base64'] = excelexporters.storestatistics.export(result, |
616
|
|
|
store['name'], |
617
|
|
|
reporting_start_datetime_local, |
618
|
|
|
reporting_end_datetime_local, |
619
|
|
|
period_type) |
620
|
|
|
resp.body = json.dumps(result) |
621
|
|
|
|