reports.storecost.Reporting.on_get()   F
last analyzed

Complexity

Conditions 104

Size

Total Lines 505
Code Lines 375

Duplication

Lines 505
Ratio 100 %

Importance

Changes 0
Metric Value
cc 104
eloc 375
nop 2
dl 505
loc 505
rs 0
c 0
b 0
f 0

How to fix   Long Method    Complexity   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

Complexity

Complex classes like reports.storecost.Reporting.on_get() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import falcon
2
import simplejson as json
3
import mysql.connector
4
import config
5
from datetime import datetime, timedelta, timezone
6
from core import utilities
7
from decimal import Decimal
8
import excelexporters.storecost
9
10
11 View Code Duplication
class Reporting:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
12
    @staticmethod
13
    def __init__():
14
        pass
15
16
    @staticmethod
17
    def on_options(req, resp):
18
        resp.status = falcon.HTTP_200
19
20
    ####################################################################################################################
21
    # PROCEDURES
22
    # Step 1: valid parameters
23
    # Step 2: query the store
24
    # Step 3: query energy categories
25
    # Step 4: query associated sensors
26
    # Step 5: query associated points
27
    # Step 6: query base period energy cost
28
    # Step 7: query reporting period energy cost
29
    # Step 8: query tariff data
30
    # Step 9: query associated sensors and points data
31
    # Step 10: construct the report
32
    ####################################################################################################################
33
    @staticmethod
34
    def on_get(req, resp):
35
        print(req.params)
36
        store_id = req.params.get('storeid')
37
        period_type = req.params.get('periodtype')
38
        base_start_datetime_local = req.params.get('baseperiodstartdatetime')
39
        base_end_datetime_local = req.params.get('baseperiodenddatetime')
40
        reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime')
41
        reporting_end_datetime_local = req.params.get('reportingperiodenddatetime')
42
43
        ################################################################################################################
44
        # Step 1: valid parameters
45
        ################################################################################################################
46
        if store_id is None:
47
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID')
48
        else:
49
            store_id = str.strip(store_id)
50
            if not store_id.isdigit() or int(store_id) <= 0:
51
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID')
52
53
        if period_type is None:
54
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
55
        else:
56
            period_type = str.strip(period_type)
57
            if period_type not in ['hourly', 'daily', 'monthly', 'yearly']:
58
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
59
60
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
61
        if config.utc_offset[0] == '-':
62
            timezone_offset = -timezone_offset
63
64
        base_start_datetime_utc = None
65
        if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0:
66
            base_start_datetime_local = str.strip(base_start_datetime_local)
67
            try:
68
                base_start_datetime_utc = datetime.strptime(base_start_datetime_local,
69
                                                            '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
70
                    timedelta(minutes=timezone_offset)
71
            except ValueError:
72
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
73
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
74
75
        base_end_datetime_utc = None
76
        if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0:
77
            base_end_datetime_local = str.strip(base_end_datetime_local)
78
            try:
79
                base_end_datetime_utc = datetime.strptime(base_end_datetime_local,
80
                                                          '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
81
                    timedelta(minutes=timezone_offset)
82
            except ValueError:
83
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
84
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
85
86
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
87
                base_start_datetime_utc >= base_end_datetime_utc:
88
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
89
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
90
91
        if reporting_start_datetime_local is None:
92
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
93
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
94
        else:
95
            reporting_start_datetime_local = str.strip(reporting_start_datetime_local)
96
            try:
97
                reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local,
98
                                                                 '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
99
                    timedelta(minutes=timezone_offset)
100
            except ValueError:
101
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
102
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
103
104
        if reporting_end_datetime_local is None:
105
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
106
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
107
        else:
108
            reporting_end_datetime_local = str.strip(reporting_end_datetime_local)
109
            try:
110
                reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local,
111
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
112
                    timedelta(minutes=timezone_offset)
113
            except ValueError:
114
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
115
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
116
117
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
118
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
119
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
120
121
        ################################################################################################################
122
        # Step 2: query the store
123
        ################################################################################################################
124
        cnx_system = mysql.connector.connect(**config.myems_system_db)
125
        cursor_system = cnx_system.cursor()
126
127
        cnx_billing = mysql.connector.connect(**config.myems_billing_db)
128
        cursor_billing = cnx_billing.cursor()
129
130
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
131
        cursor_historical = cnx_historical.cursor()
132
133
        cursor_system.execute(" SELECT id, name, area, cost_center_id "
134
                              " FROM tbl_stores "
135
                              " WHERE id = %s ", (store_id,))
136
        row_store = cursor_system.fetchone()
137
        if row_store is None:
138
            if cursor_system:
139
                cursor_system.close()
140
            if cnx_system:
141
                cnx_system.disconnect()
142
143
            if cursor_billing:
144
                cursor_billing.close()
145
            if cnx_billing:
146
                cnx_billing.disconnect()
147
148
            if cnx_historical:
149
                cnx_historical.close()
150
            if cursor_historical:
151
                cursor_historical.disconnect()
152
            raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.STORE_NOT_FOUND')
153
154
        store = dict()
155
        store['id'] = row_store[0]
156
        store['name'] = row_store[1]
157
        store['area'] = row_store[2]
158
        store['cost_center_id'] = row_store[3]
159
160
        ################################################################################################################
161
        # Step 3: query energy categories
162
        ################################################################################################################
163
        energy_category_set = set()
164
        # query energy categories in base period
165
        cursor_billing.execute(" SELECT DISTINCT(energy_category_id) "
166
                               " FROM tbl_store_input_category_hourly "
167
                               " WHERE store_id = %s "
168
                               "     AND start_datetime_utc >= %s "
169
                               "     AND start_datetime_utc < %s ",
170
                               (store['id'], base_start_datetime_utc, base_end_datetime_utc))
171
        rows_energy_categories = cursor_billing.fetchall()
172
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
173
            for row_energy_category in rows_energy_categories:
174
                energy_category_set.add(row_energy_category[0])
175
176
        # query energy categories in reporting period
177
        cursor_billing.execute(" SELECT DISTINCT(energy_category_id) "
178
                               " FROM tbl_store_input_category_hourly "
179
                               " WHERE store_id = %s "
180
                               "     AND start_datetime_utc >= %s "
181
                               "     AND start_datetime_utc < %s ",
182
                               (store['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
183
        rows_energy_categories = cursor_billing.fetchall()
184
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
185
            for row_energy_category in rows_energy_categories:
186
                energy_category_set.add(row_energy_category[0])
187
188
        # query all energy categories in base period and reporting period
189
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
190
                              " FROM tbl_energy_categories "
191
                              " ORDER BY id ", )
192
        rows_energy_categories = cursor_system.fetchall()
193
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
194
            if cursor_system:
195
                cursor_system.close()
196
            if cnx_system:
197
                cnx_system.disconnect()
198
199
            if cursor_billing:
200
                cursor_billing.close()
201
            if cnx_billing:
202
                cnx_billing.disconnect()
203
204
            if cnx_historical:
205
                cnx_historical.close()
206
            if cursor_historical:
207
                cursor_historical.disconnect()
208
            raise falcon.HTTPError(falcon.HTTP_404,
209
                                   title='API.NOT_FOUND',
210
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
211
        energy_category_dict = dict()
212
        for row_energy_category in rows_energy_categories:
213
            if row_energy_category[0] in energy_category_set:
214
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
215
                                                                "unit_of_measure": row_energy_category[2],
216
                                                                "kgce": row_energy_category[3],
217
                                                                "kgco2e": row_energy_category[4]}
218
219
        ################################################################################################################
220
        # Step 4: query associated sensors
221
        ################################################################################################################
222
        point_list = list()
223
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
224
                              " FROM tbl_stores st, tbl_sensors se, tbl_stores_sensors ss, "
225
                              "      tbl_points p, tbl_sensors_points sp "
226
                              " WHERE st.id = %s AND st.id = ss.store_id AND ss.sensor_id = se.id "
227
                              "       AND se.id = sp.sensor_id AND sp.point_id = p.id "
228
                              " ORDER BY p.id ", (store['id'], ))
229
        rows_points = cursor_system.fetchall()
230
        if rows_points is not None and len(rows_points) > 0:
231
            for row in rows_points:
232
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
233
234
        ################################################################################################################
235
        # Step 5: query associated points
236
        ################################################################################################################
237
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
238
                              " FROM tbl_stores s, tbl_stores_points sp, tbl_points p "
239
                              " WHERE s.id = %s AND s.id = sp.store_id AND sp.point_id = p.id "
240
                              " ORDER BY p.id ", (store['id'], ))
241
        rows_points = cursor_system.fetchall()
242
        if rows_points is not None and len(rows_points) > 0:
243
            for row in rows_points:
244
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
245
246
        ################################################################################################################
247
        # Step 6: query base period energy cost
248
        ################################################################################################################
249
        base = dict()
250
        if energy_category_set is not None and len(energy_category_set) > 0:
251
            for energy_category_id in energy_category_set:
252
                base[energy_category_id] = dict()
253
                base[energy_category_id]['timestamps'] = list()
254
                base[energy_category_id]['values'] = list()
255
                base[energy_category_id]['subtotal'] = Decimal(0.0)
256
257
                cursor_billing.execute(" SELECT start_datetime_utc, actual_value "
258
                                       " FROM tbl_store_input_category_hourly "
259
                                       " WHERE store_id = %s "
260
                                       "     AND energy_category_id = %s "
261
                                       "     AND start_datetime_utc >= %s "
262
                                       "     AND start_datetime_utc < %s "
263
                                       " ORDER BY start_datetime_utc ",
264
                                       (store['id'],
265
                                        energy_category_id,
266
                                        base_start_datetime_utc,
267
                                        base_end_datetime_utc))
268
                rows_store_hourly = cursor_billing.fetchall()
269
270
                rows_store_periodically = utilities.aggregate_hourly_data_by_period(rows_store_hourly,
271
                                                                                    base_start_datetime_utc,
272
                                                                                    base_end_datetime_utc,
273
                                                                                    period_type)
274
                for row_store_periodically in rows_store_periodically:
275
                    current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \
276
                                             timedelta(minutes=timezone_offset)
277
                    if period_type == 'hourly':
278
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
279
                    elif period_type == 'daily':
280
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
281
                    elif period_type == 'monthly':
282
                        current_datetime = current_datetime_local.strftime('%Y-%m')
283
                    elif period_type == 'yearly':
284
                        current_datetime = current_datetime_local.strftime('%Y')
285
286
                    actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1]
287
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
introduced by
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
288
                    base[energy_category_id]['values'].append(actual_value)
289
                    base[energy_category_id]['subtotal'] += actual_value
290
291
        ################################################################################################################
292
        # Step 7: query reporting period energy cost
293
        ################################################################################################################
294
        reporting = dict()
295
        if energy_category_set is not None and len(energy_category_set) > 0:
296
            for energy_category_id in energy_category_set:
297
                reporting[energy_category_id] = dict()
298
                reporting[energy_category_id]['timestamps'] = list()
299
                reporting[energy_category_id]['values'] = list()
300
                reporting[energy_category_id]['subtotal'] = Decimal(0.0)
301
                reporting[energy_category_id]['toppeak'] = Decimal(0.0)
302
                reporting[energy_category_id]['onpeak'] = Decimal(0.0)
303
                reporting[energy_category_id]['midpeak'] = Decimal(0.0)
304
                reporting[energy_category_id]['offpeak'] = Decimal(0.0)
305
306
                cursor_billing.execute(" SELECT start_datetime_utc, actual_value "
307
                                       " FROM tbl_store_input_category_hourly "
308
                                       " WHERE store_id = %s "
309
                                       "     AND energy_category_id = %s "
310
                                       "     AND start_datetime_utc >= %s "
311
                                       "     AND start_datetime_utc < %s "
312
                                       " ORDER BY start_datetime_utc ",
313
                                       (store['id'],
314
                                        energy_category_id,
315
                                        reporting_start_datetime_utc,
316
                                        reporting_end_datetime_utc))
317
                rows_store_hourly = cursor_billing.fetchall()
318
319
                rows_store_periodically = utilities.aggregate_hourly_data_by_period(rows_store_hourly,
320
                                                                                    reporting_start_datetime_utc,
321
                                                                                    reporting_end_datetime_utc,
322
                                                                                    period_type)
323
                for row_store_periodically in rows_store_periodically:
324
                    current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \
325
                                             timedelta(minutes=timezone_offset)
326
                    if period_type == 'hourly':
327
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
328
                    elif period_type == 'daily':
329
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
330
                    elif period_type == 'monthly':
331
                        current_datetime = current_datetime_local.strftime('%Y-%m')
332
                    elif period_type == 'yearly':
333
                        current_datetime = current_datetime_local.strftime('%Y')
334
335
                    actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1]
336
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
337
                    reporting[energy_category_id]['values'].append(actual_value)
338
                    reporting[energy_category_id]['subtotal'] += actual_value
339
340
                energy_category_tariff_dict = utilities.get_energy_category_peak_types(store['cost_center_id'],
341
                                                                                       energy_category_id,
342
                                                                                       reporting_start_datetime_utc,
343
                                                                                       reporting_end_datetime_utc)
344
                for row in rows_store_hourly:
345
                    peak_type = energy_category_tariff_dict.get(row[0], None)
346
                    if peak_type == 'toppeak':
347
                        reporting[energy_category_id]['toppeak'] += row[1]
348
                    elif peak_type == 'onpeak':
349
                        reporting[energy_category_id]['onpeak'] += row[1]
350
                    elif peak_type == 'midpeak':
351
                        reporting[energy_category_id]['midpeak'] += row[1]
352
                    elif peak_type == 'offpeak':
353
                        reporting[energy_category_id]['offpeak'] += row[1]
354
355
        ################################################################################################################
356
        # Step 8: query tariff data
357
        ################################################################################################################
358
        parameters_data = dict()
359
        parameters_data['names'] = list()
360
        parameters_data['timestamps'] = list()
361
        parameters_data['values'] = list()
362
        if energy_category_set is not None and len(energy_category_set) > 0:
363
            for energy_category_id in energy_category_set:
364
                energy_category_tariff_dict = utilities.get_energy_category_tariffs(store['cost_center_id'],
365
                                                                                    energy_category_id,
366
                                                                                    reporting_start_datetime_utc,
367
                                                                                    reporting_end_datetime_utc)
368
                tariff_timestamp_list = list()
369
                tariff_value_list = list()
370
                for k, v in energy_category_tariff_dict.items():
371
                    # convert k from utc to local
372
                    k = k + timedelta(minutes=timezone_offset)
373
                    tariff_timestamp_list.append(k.isoformat()[0:19][0:19])
374
                    tariff_value_list.append(v)
375
376
                parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name'])
377
                parameters_data['timestamps'].append(tariff_timestamp_list)
378
                parameters_data['values'].append(tariff_value_list)
379
380
        ################################################################################################################
381
        # Step 9: query associated sensors and points data
382
        ################################################################################################################
383
        for point in point_list:
384
            point_values = []
385
            point_timestamps = []
386
            if point['object_type'] == 'ANALOG_VALUE':
387
                query = (" SELECT utc_date_time, actual_value "
388
                         " FROM tbl_analog_value "
389
                         " WHERE point_id = %s "
390
                         "       AND utc_date_time BETWEEN %s AND %s "
391
                         " ORDER BY utc_date_time ")
392
                cursor_historical.execute(query, (point['id'],
393
                                                  reporting_start_datetime_utc,
394
                                                  reporting_end_datetime_utc))
395
                rows = cursor_historical.fetchall()
396
397
                if rows is not None and len(rows) > 0:
398
                    for row in rows:
399
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
400
                                                 timedelta(minutes=timezone_offset)
401
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
402
                        point_timestamps.append(current_datetime)
403
                        point_values.append(row[1])
404
405
            elif point['object_type'] == 'ENERGY_VALUE':
406
                query = (" SELECT utc_date_time, actual_value "
407
                         " FROM tbl_energy_value "
408
                         " WHERE point_id = %s "
409
                         "       AND utc_date_time BETWEEN %s AND %s "
410
                         " ORDER BY utc_date_time ")
411
                cursor_historical.execute(query, (point['id'],
412
                                                  reporting_start_datetime_utc,
413
                                                  reporting_end_datetime_utc))
414
                rows = cursor_historical.fetchall()
415
416
                if rows is not None and len(rows) > 0:
417
                    for row in rows:
418
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
419
                                                 timedelta(minutes=timezone_offset)
420
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
421
                        point_timestamps.append(current_datetime)
422
                        point_values.append(row[1])
423
            elif point['object_type'] == 'DIGITAL_VALUE':
424
                query = (" SELECT utc_date_time, actual_value "
425
                         " FROM tbl_digital_value "
426
                         " WHERE point_id = %s "
427
                         "       AND utc_date_time BETWEEN %s AND %s ")
428
                cursor_historical.execute(query, (point['id'],
429
                                                  reporting_start_datetime_utc,
430
                                                  reporting_end_datetime_utc))
431
                rows = cursor_historical.fetchall()
432
433
                if rows is not None and len(rows) > 0:
434
                    for row in rows:
435
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
436
                                                 timedelta(minutes=timezone_offset)
437
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
438
                        point_timestamps.append(current_datetime)
439
                        point_values.append(row[1])
440
441
            parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
442
            parameters_data['timestamps'].append(point_timestamps)
443
            parameters_data['values'].append(point_values)
444
445
        ################################################################################################################
446
        # Step 10: construct the report
447
        ################################################################################################################
448
        if cursor_system:
449
            cursor_system.close()
450
        if cnx_system:
451
            cnx_system.disconnect()
452
453
        if cursor_billing:
454
            cursor_billing.close()
455
        if cnx_billing:
456
            cnx_billing.disconnect()
457
458
        result = dict()
459
460
        result['store'] = dict()
461
        result['store']['name'] = store['name']
462
        result['store']['area'] = store['area']
463
464
        result['base_period'] = dict()
465
        result['base_period']['names'] = list()
466
        result['base_period']['units'] = list()
467
        result['base_period']['timestamps'] = list()
468
        result['base_period']['values'] = list()
469
        result['base_period']['subtotals'] = list()
470
        result['base_period']['total'] = Decimal(0.0)
471
        if energy_category_set is not None and len(energy_category_set) > 0:
472
            for energy_category_id in energy_category_set:
473
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
474
                result['base_period']['units'].append(config.currency_unit)
475
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
476
                result['base_period']['values'].append(base[energy_category_id]['values'])
477
                result['base_period']['subtotals'].append(base[energy_category_id]['subtotal'])
478
                result['base_period']['total'] += base[energy_category_id]['subtotal']
479
480
        result['reporting_period'] = dict()
481
        result['reporting_period']['names'] = list()
482
        result['reporting_period']['energy_category_ids'] = list()
483
        result['reporting_period']['units'] = list()
484
        result['reporting_period']['timestamps'] = list()
485
        result['reporting_period']['values'] = list()
486
        result['reporting_period']['subtotals'] = list()
487
        result['reporting_period']['subtotals_per_unit_area'] = list()
488
        result['reporting_period']['toppeaks'] = list()
489
        result['reporting_period']['onpeaks'] = list()
490
        result['reporting_period']['midpeaks'] = list()
491
        result['reporting_period']['offpeaks'] = list()
492
        result['reporting_period']['increment_rates'] = list()
493
        result['reporting_period']['total'] = Decimal(0.0)
494
        result['reporting_period']['total_per_unit_area'] = Decimal(0.0)
495
        result['reporting_period']['total_increment_rate'] = Decimal(0.0)
496
        result['reporting_period']['total_unit'] = config.currency_unit
497
498
        if energy_category_set is not None and len(energy_category_set) > 0:
499
            for energy_category_id in energy_category_set:
500
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
501
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
502
                result['reporting_period']['units'].append(config.currency_unit)
503
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
504
                result['reporting_period']['values'].append(reporting[energy_category_id]['values'])
505
                result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal'])
506
                result['reporting_period']['subtotals_per_unit_area'].append(
507
                    reporting[energy_category_id]['subtotal'] / store['area'] if store['area'] > 0.0 else None)
508
                result['reporting_period']['toppeaks'].append(reporting[energy_category_id]['toppeak'])
509
                result['reporting_period']['onpeaks'].append(reporting[energy_category_id]['onpeak'])
510
                result['reporting_period']['midpeaks'].append(reporting[energy_category_id]['midpeak'])
511
                result['reporting_period']['offpeaks'].append(reporting[energy_category_id]['offpeak'])
512
                result['reporting_period']['increment_rates'].append(
513
                    (reporting[energy_category_id]['subtotal'] - base[energy_category_id]['subtotal']) /
514
                    base[energy_category_id]['subtotal']
515
                    if base[energy_category_id]['subtotal'] > 0.0 else None)
516
                result['reporting_period']['total'] += reporting[energy_category_id]['subtotal']
517
518
        result['reporting_period']['total_per_unit_area'] = \
519
            result['reporting_period']['total'] / store['area'] if store['area'] > 0.0 else None
520
521
        result['reporting_period']['total_increment_rate'] = \
522
            (result['reporting_period']['total'] - result['base_period']['total']) / \
523
            result['base_period']['total'] \
524
            if result['base_period']['total'] > Decimal(0.0) else None
525
526
        result['parameters'] = {
527
            "names": parameters_data['names'],
528
            "timestamps": parameters_data['timestamps'],
529
            "values": parameters_data['values']
530
        }
531
        # export result to Excel file and then encode the file to base64 string
532
        result['excel_bytes_base64'] = excelexporters.storecost.export(result,
533
                                                                       store['name'],
534
                                                                       reporting_start_datetime_local,
535
                                                                       reporting_end_datetime_local,
536
                                                                       period_type)
537
        resp.body = json.dumps(result)
538