1
|
|
|
import falcon |
2
|
|
|
import simplejson as json |
3
|
|
|
import mysql.connector |
4
|
|
|
import config |
5
|
|
|
from datetime import datetime, timedelta, timezone |
6
|
|
|
from core import utilities |
7
|
|
|
from decimal import Decimal |
8
|
|
|
import excelexporters.storecost |
9
|
|
|
|
10
|
|
|
|
11
|
|
View Code Duplication |
class Reporting: |
|
|
|
|
12
|
|
|
@staticmethod |
13
|
|
|
def __init__(): |
14
|
|
|
pass |
15
|
|
|
|
16
|
|
|
@staticmethod |
17
|
|
|
def on_options(req, resp): |
18
|
|
|
resp.status = falcon.HTTP_200 |
19
|
|
|
|
20
|
|
|
#################################################################################################################### |
21
|
|
|
# PROCEDURES |
22
|
|
|
# Step 1: valid parameters |
23
|
|
|
# Step 2: query the store |
24
|
|
|
# Step 3: query energy categories |
25
|
|
|
# Step 4: query associated sensors |
26
|
|
|
# Step 5: query associated points |
27
|
|
|
# Step 6: query base period energy cost |
28
|
|
|
# Step 7: query reporting period energy cost |
29
|
|
|
# Step 8: query tariff data |
30
|
|
|
# Step 9: query associated sensors and points data |
31
|
|
|
# Step 10: construct the report |
32
|
|
|
#################################################################################################################### |
33
|
|
|
@staticmethod |
34
|
|
|
def on_get(req, resp): |
35
|
|
|
print(req.params) |
36
|
|
|
store_id = req.params.get('storeid') |
37
|
|
|
period_type = req.params.get('periodtype') |
38
|
|
|
base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
39
|
|
|
base_end_datetime_local = req.params.get('baseperiodenddatetime') |
40
|
|
|
reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
41
|
|
|
reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
42
|
|
|
|
43
|
|
|
################################################################################################################ |
44
|
|
|
# Step 1: valid parameters |
45
|
|
|
################################################################################################################ |
46
|
|
|
if store_id is None: |
47
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
48
|
|
|
else: |
49
|
|
|
store_id = str.strip(store_id) |
50
|
|
|
if not store_id.isdigit() or int(store_id) <= 0: |
51
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
52
|
|
|
|
53
|
|
|
if period_type is None: |
54
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
55
|
|
|
else: |
56
|
|
|
period_type = str.strip(period_type) |
57
|
|
|
if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
58
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
59
|
|
|
|
60
|
|
|
timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
61
|
|
|
if config.utc_offset[0] == '-': |
62
|
|
|
timezone_offset = -timezone_offset |
63
|
|
|
|
64
|
|
|
base_start_datetime_utc = None |
65
|
|
|
if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
66
|
|
|
base_start_datetime_local = str.strip(base_start_datetime_local) |
67
|
|
|
try: |
68
|
|
|
base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
69
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
70
|
|
|
timedelta(minutes=timezone_offset) |
71
|
|
|
except ValueError: |
72
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
73
|
|
|
description="API.INVALID_BASE_PERIOD_START_DATETIME") |
74
|
|
|
|
75
|
|
|
base_end_datetime_utc = None |
76
|
|
|
if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
77
|
|
|
base_end_datetime_local = str.strip(base_end_datetime_local) |
78
|
|
|
try: |
79
|
|
|
base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
80
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
81
|
|
|
timedelta(minutes=timezone_offset) |
82
|
|
|
except ValueError: |
83
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
84
|
|
|
description="API.INVALID_BASE_PERIOD_END_DATETIME") |
85
|
|
|
|
86
|
|
|
if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
87
|
|
|
base_start_datetime_utc >= base_end_datetime_utc: |
88
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
89
|
|
|
description='API.INVALID_BASE_PERIOD_END_DATETIME') |
90
|
|
|
|
91
|
|
|
if reporting_start_datetime_local is None: |
92
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
93
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
94
|
|
|
else: |
95
|
|
|
reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
96
|
|
|
try: |
97
|
|
|
reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
98
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
99
|
|
|
timedelta(minutes=timezone_offset) |
100
|
|
|
except ValueError: |
101
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
102
|
|
|
description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
103
|
|
|
|
104
|
|
|
if reporting_end_datetime_local is None: |
105
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
106
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
107
|
|
|
else: |
108
|
|
|
reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
109
|
|
|
try: |
110
|
|
|
reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
111
|
|
|
'%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
112
|
|
|
timedelta(minutes=timezone_offset) |
113
|
|
|
except ValueError: |
114
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
115
|
|
|
description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
116
|
|
|
|
117
|
|
|
if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
118
|
|
|
raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
119
|
|
|
description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
120
|
|
|
|
121
|
|
|
################################################################################################################ |
122
|
|
|
# Step 2: query the store |
123
|
|
|
################################################################################################################ |
124
|
|
|
cnx_system = mysql.connector.connect(**config.myems_system_db) |
125
|
|
|
cursor_system = cnx_system.cursor() |
126
|
|
|
|
127
|
|
|
cnx_billing = mysql.connector.connect(**config.myems_billing_db) |
128
|
|
|
cursor_billing = cnx_billing.cursor() |
129
|
|
|
|
130
|
|
|
cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
131
|
|
|
cursor_historical = cnx_historical.cursor() |
132
|
|
|
|
133
|
|
|
cursor_system.execute(" SELECT id, name, area, cost_center_id " |
134
|
|
|
" FROM tbl_stores " |
135
|
|
|
" WHERE id = %s ", (store_id,)) |
136
|
|
|
row_store = cursor_system.fetchone() |
137
|
|
|
if row_store is None: |
138
|
|
|
if cursor_system: |
139
|
|
|
cursor_system.close() |
140
|
|
|
if cnx_system: |
141
|
|
|
cnx_system.disconnect() |
142
|
|
|
|
143
|
|
|
if cursor_billing: |
144
|
|
|
cursor_billing.close() |
145
|
|
|
if cnx_billing: |
146
|
|
|
cnx_billing.disconnect() |
147
|
|
|
|
148
|
|
|
if cnx_historical: |
149
|
|
|
cnx_historical.close() |
150
|
|
|
if cursor_historical: |
151
|
|
|
cursor_historical.disconnect() |
152
|
|
|
raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.STORE_NOT_FOUND') |
153
|
|
|
|
154
|
|
|
store = dict() |
155
|
|
|
store['id'] = row_store[0] |
156
|
|
|
store['name'] = row_store[1] |
157
|
|
|
store['area'] = row_store[2] |
158
|
|
|
store['cost_center_id'] = row_store[3] |
159
|
|
|
|
160
|
|
|
################################################################################################################ |
161
|
|
|
# Step 3: query energy categories |
162
|
|
|
################################################################################################################ |
163
|
|
|
energy_category_set = set() |
164
|
|
|
# query energy categories in base period |
165
|
|
|
cursor_billing.execute(" SELECT DISTINCT(energy_category_id) " |
166
|
|
|
" FROM tbl_store_input_category_hourly " |
167
|
|
|
" WHERE store_id = %s " |
168
|
|
|
" AND start_datetime_utc >= %s " |
169
|
|
|
" AND start_datetime_utc < %s ", |
170
|
|
|
(store['id'], base_start_datetime_utc, base_end_datetime_utc)) |
171
|
|
|
rows_energy_categories = cursor_billing.fetchall() |
172
|
|
|
if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
173
|
|
|
for row_energy_category in rows_energy_categories: |
174
|
|
|
energy_category_set.add(row_energy_category[0]) |
175
|
|
|
|
176
|
|
|
# query energy categories in reporting period |
177
|
|
|
cursor_billing.execute(" SELECT DISTINCT(energy_category_id) " |
178
|
|
|
" FROM tbl_store_input_category_hourly " |
179
|
|
|
" WHERE store_id = %s " |
180
|
|
|
" AND start_datetime_utc >= %s " |
181
|
|
|
" AND start_datetime_utc < %s ", |
182
|
|
|
(store['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
183
|
|
|
rows_energy_categories = cursor_billing.fetchall() |
184
|
|
|
if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
185
|
|
|
for row_energy_category in rows_energy_categories: |
186
|
|
|
energy_category_set.add(row_energy_category[0]) |
187
|
|
|
|
188
|
|
|
# query all energy categories in base period and reporting period |
189
|
|
|
cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
190
|
|
|
" FROM tbl_energy_categories " |
191
|
|
|
" ORDER BY id ", ) |
192
|
|
|
rows_energy_categories = cursor_system.fetchall() |
193
|
|
|
if rows_energy_categories is None or len(rows_energy_categories) == 0: |
194
|
|
|
if cursor_system: |
195
|
|
|
cursor_system.close() |
196
|
|
|
if cnx_system: |
197
|
|
|
cnx_system.disconnect() |
198
|
|
|
|
199
|
|
|
if cursor_billing: |
200
|
|
|
cursor_billing.close() |
201
|
|
|
if cnx_billing: |
202
|
|
|
cnx_billing.disconnect() |
203
|
|
|
|
204
|
|
|
if cnx_historical: |
205
|
|
|
cnx_historical.close() |
206
|
|
|
if cursor_historical: |
207
|
|
|
cursor_historical.disconnect() |
208
|
|
|
raise falcon.HTTPError(falcon.HTTP_404, |
209
|
|
|
title='API.NOT_FOUND', |
210
|
|
|
description='API.ENERGY_CATEGORY_NOT_FOUND') |
211
|
|
|
energy_category_dict = dict() |
212
|
|
|
for row_energy_category in rows_energy_categories: |
213
|
|
|
if row_energy_category[0] in energy_category_set: |
214
|
|
|
energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
215
|
|
|
"unit_of_measure": row_energy_category[2], |
216
|
|
|
"kgce": row_energy_category[3], |
217
|
|
|
"kgco2e": row_energy_category[4]} |
218
|
|
|
|
219
|
|
|
################################################################################################################ |
220
|
|
|
# Step 4: query associated sensors |
221
|
|
|
################################################################################################################ |
222
|
|
|
point_list = list() |
223
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
224
|
|
|
" FROM tbl_stores st, tbl_sensors se, tbl_stores_sensors ss, " |
225
|
|
|
" tbl_points p, tbl_sensors_points sp " |
226
|
|
|
" WHERE st.id = %s AND st.id = ss.store_id AND ss.sensor_id = se.id " |
227
|
|
|
" AND se.id = sp.sensor_id AND sp.point_id = p.id " |
228
|
|
|
" ORDER BY p.id ", (store['id'], )) |
229
|
|
|
rows_points = cursor_system.fetchall() |
230
|
|
|
if rows_points is not None and len(rows_points) > 0: |
231
|
|
|
for row in rows_points: |
232
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
233
|
|
|
|
234
|
|
|
################################################################################################################ |
235
|
|
|
# Step 5: query associated points |
236
|
|
|
################################################################################################################ |
237
|
|
|
cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
238
|
|
|
" FROM tbl_stores s, tbl_stores_points sp, tbl_points p " |
239
|
|
|
" WHERE s.id = %s AND s.id = sp.store_id AND sp.point_id = p.id " |
240
|
|
|
" ORDER BY p.id ", (store['id'], )) |
241
|
|
|
rows_points = cursor_system.fetchall() |
242
|
|
|
if rows_points is not None and len(rows_points) > 0: |
243
|
|
|
for row in rows_points: |
244
|
|
|
point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
245
|
|
|
|
246
|
|
|
################################################################################################################ |
247
|
|
|
# Step 6: query base period energy cost |
248
|
|
|
################################################################################################################ |
249
|
|
|
base = dict() |
250
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
251
|
|
|
for energy_category_id in energy_category_set: |
252
|
|
|
base[energy_category_id] = dict() |
253
|
|
|
base[energy_category_id]['timestamps'] = list() |
254
|
|
|
base[energy_category_id]['values'] = list() |
255
|
|
|
base[energy_category_id]['subtotal'] = Decimal(0.0) |
256
|
|
|
|
257
|
|
|
cursor_billing.execute(" SELECT start_datetime_utc, actual_value " |
258
|
|
|
" FROM tbl_store_input_category_hourly " |
259
|
|
|
" WHERE store_id = %s " |
260
|
|
|
" AND energy_category_id = %s " |
261
|
|
|
" AND start_datetime_utc >= %s " |
262
|
|
|
" AND start_datetime_utc < %s " |
263
|
|
|
" ORDER BY start_datetime_utc ", |
264
|
|
|
(store['id'], |
265
|
|
|
energy_category_id, |
266
|
|
|
base_start_datetime_utc, |
267
|
|
|
base_end_datetime_utc)) |
268
|
|
|
rows_store_hourly = cursor_billing.fetchall() |
269
|
|
|
|
270
|
|
|
rows_store_periodically = utilities.aggregate_hourly_data_by_period(rows_store_hourly, |
271
|
|
|
base_start_datetime_utc, |
272
|
|
|
base_end_datetime_utc, |
273
|
|
|
period_type) |
274
|
|
|
for row_store_periodically in rows_store_periodically: |
275
|
|
|
current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
276
|
|
|
timedelta(minutes=timezone_offset) |
277
|
|
|
if period_type == 'hourly': |
278
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
279
|
|
|
elif period_type == 'daily': |
280
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
281
|
|
|
elif period_type == 'monthly': |
282
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m') |
283
|
|
|
elif period_type == 'yearly': |
284
|
|
|
current_datetime = current_datetime_local.strftime('%Y') |
285
|
|
|
|
286
|
|
|
actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1] |
287
|
|
|
base[energy_category_id]['timestamps'].append(current_datetime) |
|
|
|
|
288
|
|
|
base[energy_category_id]['values'].append(actual_value) |
289
|
|
|
base[energy_category_id]['subtotal'] += actual_value |
290
|
|
|
|
291
|
|
|
################################################################################################################ |
292
|
|
|
# Step 7: query reporting period energy cost |
293
|
|
|
################################################################################################################ |
294
|
|
|
reporting = dict() |
295
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
296
|
|
|
for energy_category_id in energy_category_set: |
297
|
|
|
reporting[energy_category_id] = dict() |
298
|
|
|
reporting[energy_category_id]['timestamps'] = list() |
299
|
|
|
reporting[energy_category_id]['values'] = list() |
300
|
|
|
reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
301
|
|
|
reporting[energy_category_id]['toppeak'] = Decimal(0.0) |
302
|
|
|
reporting[energy_category_id]['onpeak'] = Decimal(0.0) |
303
|
|
|
reporting[energy_category_id]['midpeak'] = Decimal(0.0) |
304
|
|
|
reporting[energy_category_id]['offpeak'] = Decimal(0.0) |
305
|
|
|
|
306
|
|
|
cursor_billing.execute(" SELECT start_datetime_utc, actual_value " |
307
|
|
|
" FROM tbl_store_input_category_hourly " |
308
|
|
|
" WHERE store_id = %s " |
309
|
|
|
" AND energy_category_id = %s " |
310
|
|
|
" AND start_datetime_utc >= %s " |
311
|
|
|
" AND start_datetime_utc < %s " |
312
|
|
|
" ORDER BY start_datetime_utc ", |
313
|
|
|
(store['id'], |
314
|
|
|
energy_category_id, |
315
|
|
|
reporting_start_datetime_utc, |
316
|
|
|
reporting_end_datetime_utc)) |
317
|
|
|
rows_store_hourly = cursor_billing.fetchall() |
318
|
|
|
|
319
|
|
|
rows_store_periodically = utilities.aggregate_hourly_data_by_period(rows_store_hourly, |
320
|
|
|
reporting_start_datetime_utc, |
321
|
|
|
reporting_end_datetime_utc, |
322
|
|
|
period_type) |
323
|
|
|
for row_store_periodically in rows_store_periodically: |
324
|
|
|
current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
325
|
|
|
timedelta(minutes=timezone_offset) |
326
|
|
|
if period_type == 'hourly': |
327
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
328
|
|
|
elif period_type == 'daily': |
329
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
330
|
|
|
elif period_type == 'monthly': |
331
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m') |
332
|
|
|
elif period_type == 'yearly': |
333
|
|
|
current_datetime = current_datetime_local.strftime('%Y') |
334
|
|
|
|
335
|
|
|
actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1] |
336
|
|
|
reporting[energy_category_id]['timestamps'].append(current_datetime) |
337
|
|
|
reporting[energy_category_id]['values'].append(actual_value) |
338
|
|
|
reporting[energy_category_id]['subtotal'] += actual_value |
339
|
|
|
|
340
|
|
|
energy_category_tariff_dict = utilities.get_energy_category_peak_types(store['cost_center_id'], |
341
|
|
|
energy_category_id, |
342
|
|
|
reporting_start_datetime_utc, |
343
|
|
|
reporting_end_datetime_utc) |
344
|
|
|
for row in rows_store_hourly: |
345
|
|
|
peak_type = energy_category_tariff_dict.get(row[0], None) |
346
|
|
|
if peak_type == 'toppeak': |
347
|
|
|
reporting[energy_category_id]['toppeak'] += row[1] |
348
|
|
|
elif peak_type == 'onpeak': |
349
|
|
|
reporting[energy_category_id]['onpeak'] += row[1] |
350
|
|
|
elif peak_type == 'midpeak': |
351
|
|
|
reporting[energy_category_id]['midpeak'] += row[1] |
352
|
|
|
elif peak_type == 'offpeak': |
353
|
|
|
reporting[energy_category_id]['offpeak'] += row[1] |
354
|
|
|
|
355
|
|
|
################################################################################################################ |
356
|
|
|
# Step 8: query tariff data |
357
|
|
|
################################################################################################################ |
358
|
|
|
parameters_data = dict() |
359
|
|
|
parameters_data['names'] = list() |
360
|
|
|
parameters_data['timestamps'] = list() |
361
|
|
|
parameters_data['values'] = list() |
362
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
363
|
|
|
for energy_category_id in energy_category_set: |
364
|
|
|
energy_category_tariff_dict = utilities.get_energy_category_tariffs(store['cost_center_id'], |
365
|
|
|
energy_category_id, |
366
|
|
|
reporting_start_datetime_utc, |
367
|
|
|
reporting_end_datetime_utc) |
368
|
|
|
tariff_timestamp_list = list() |
369
|
|
|
tariff_value_list = list() |
370
|
|
|
for k, v in energy_category_tariff_dict.items(): |
371
|
|
|
# convert k from utc to local |
372
|
|
|
k = k + timedelta(minutes=timezone_offset) |
373
|
|
|
tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
374
|
|
|
tariff_value_list.append(v) |
375
|
|
|
|
376
|
|
|
parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
377
|
|
|
parameters_data['timestamps'].append(tariff_timestamp_list) |
378
|
|
|
parameters_data['values'].append(tariff_value_list) |
379
|
|
|
|
380
|
|
|
################################################################################################################ |
381
|
|
|
# Step 9: query associated sensors and points data |
382
|
|
|
################################################################################################################ |
383
|
|
|
for point in point_list: |
384
|
|
|
point_values = [] |
385
|
|
|
point_timestamps = [] |
386
|
|
|
if point['object_type'] == 'ANALOG_VALUE': |
387
|
|
|
query = (" SELECT utc_date_time, actual_value " |
388
|
|
|
" FROM tbl_analog_value " |
389
|
|
|
" WHERE point_id = %s " |
390
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
391
|
|
|
" ORDER BY utc_date_time ") |
392
|
|
|
cursor_historical.execute(query, (point['id'], |
393
|
|
|
reporting_start_datetime_utc, |
394
|
|
|
reporting_end_datetime_utc)) |
395
|
|
|
rows = cursor_historical.fetchall() |
396
|
|
|
|
397
|
|
|
if rows is not None and len(rows) > 0: |
398
|
|
|
for row in rows: |
399
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
400
|
|
|
timedelta(minutes=timezone_offset) |
401
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
402
|
|
|
point_timestamps.append(current_datetime) |
403
|
|
|
point_values.append(row[1]) |
404
|
|
|
|
405
|
|
|
elif point['object_type'] == 'ENERGY_VALUE': |
406
|
|
|
query = (" SELECT utc_date_time, actual_value " |
407
|
|
|
" FROM tbl_energy_value " |
408
|
|
|
" WHERE point_id = %s " |
409
|
|
|
" AND utc_date_time BETWEEN %s AND %s " |
410
|
|
|
" ORDER BY utc_date_time ") |
411
|
|
|
cursor_historical.execute(query, (point['id'], |
412
|
|
|
reporting_start_datetime_utc, |
413
|
|
|
reporting_end_datetime_utc)) |
414
|
|
|
rows = cursor_historical.fetchall() |
415
|
|
|
|
416
|
|
|
if rows is not None and len(rows) > 0: |
417
|
|
|
for row in rows: |
418
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
419
|
|
|
timedelta(minutes=timezone_offset) |
420
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
421
|
|
|
point_timestamps.append(current_datetime) |
422
|
|
|
point_values.append(row[1]) |
423
|
|
|
elif point['object_type'] == 'DIGITAL_VALUE': |
424
|
|
|
query = (" SELECT utc_date_time, actual_value " |
425
|
|
|
" FROM tbl_digital_value " |
426
|
|
|
" WHERE point_id = %s " |
427
|
|
|
" AND utc_date_time BETWEEN %s AND %s ") |
428
|
|
|
cursor_historical.execute(query, (point['id'], |
429
|
|
|
reporting_start_datetime_utc, |
430
|
|
|
reporting_end_datetime_utc)) |
431
|
|
|
rows = cursor_historical.fetchall() |
432
|
|
|
|
433
|
|
|
if rows is not None and len(rows) > 0: |
434
|
|
|
for row in rows: |
435
|
|
|
current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
436
|
|
|
timedelta(minutes=timezone_offset) |
437
|
|
|
current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
438
|
|
|
point_timestamps.append(current_datetime) |
439
|
|
|
point_values.append(row[1]) |
440
|
|
|
|
441
|
|
|
parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
442
|
|
|
parameters_data['timestamps'].append(point_timestamps) |
443
|
|
|
parameters_data['values'].append(point_values) |
444
|
|
|
|
445
|
|
|
################################################################################################################ |
446
|
|
|
# Step 10: construct the report |
447
|
|
|
################################################################################################################ |
448
|
|
|
if cursor_system: |
449
|
|
|
cursor_system.close() |
450
|
|
|
if cnx_system: |
451
|
|
|
cnx_system.disconnect() |
452
|
|
|
|
453
|
|
|
if cursor_billing: |
454
|
|
|
cursor_billing.close() |
455
|
|
|
if cnx_billing: |
456
|
|
|
cnx_billing.disconnect() |
457
|
|
|
|
458
|
|
|
result = dict() |
459
|
|
|
|
460
|
|
|
result['store'] = dict() |
461
|
|
|
result['store']['name'] = store['name'] |
462
|
|
|
result['store']['area'] = store['area'] |
463
|
|
|
|
464
|
|
|
result['base_period'] = dict() |
465
|
|
|
result['base_period']['names'] = list() |
466
|
|
|
result['base_period']['units'] = list() |
467
|
|
|
result['base_period']['timestamps'] = list() |
468
|
|
|
result['base_period']['values'] = list() |
469
|
|
|
result['base_period']['subtotals'] = list() |
470
|
|
|
result['base_period']['total'] = Decimal(0.0) |
471
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
472
|
|
|
for energy_category_id in energy_category_set: |
473
|
|
|
result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
474
|
|
|
result['base_period']['units'].append(config.currency_unit) |
475
|
|
|
result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
476
|
|
|
result['base_period']['values'].append(base[energy_category_id]['values']) |
477
|
|
|
result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
478
|
|
|
result['base_period']['total'] += base[energy_category_id]['subtotal'] |
479
|
|
|
|
480
|
|
|
result['reporting_period'] = dict() |
481
|
|
|
result['reporting_period']['names'] = list() |
482
|
|
|
result['reporting_period']['energy_category_ids'] = list() |
483
|
|
|
result['reporting_period']['units'] = list() |
484
|
|
|
result['reporting_period']['timestamps'] = list() |
485
|
|
|
result['reporting_period']['values'] = list() |
486
|
|
|
result['reporting_period']['subtotals'] = list() |
487
|
|
|
result['reporting_period']['subtotals_per_unit_area'] = list() |
488
|
|
|
result['reporting_period']['toppeaks'] = list() |
489
|
|
|
result['reporting_period']['onpeaks'] = list() |
490
|
|
|
result['reporting_period']['midpeaks'] = list() |
491
|
|
|
result['reporting_period']['offpeaks'] = list() |
492
|
|
|
result['reporting_period']['increment_rates'] = list() |
493
|
|
|
result['reporting_period']['total'] = Decimal(0.0) |
494
|
|
|
result['reporting_period']['total_per_unit_area'] = Decimal(0.0) |
495
|
|
|
result['reporting_period']['total_increment_rate'] = Decimal(0.0) |
496
|
|
|
result['reporting_period']['total_unit'] = config.currency_unit |
497
|
|
|
|
498
|
|
|
if energy_category_set is not None and len(energy_category_set) > 0: |
499
|
|
|
for energy_category_id in energy_category_set: |
500
|
|
|
result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
501
|
|
|
result['reporting_period']['energy_category_ids'].append(energy_category_id) |
502
|
|
|
result['reporting_period']['units'].append(config.currency_unit) |
503
|
|
|
result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
504
|
|
|
result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
505
|
|
|
result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
506
|
|
|
result['reporting_period']['subtotals_per_unit_area'].append( |
507
|
|
|
reporting[energy_category_id]['subtotal'] / store['area'] if store['area'] > 0.0 else None) |
508
|
|
|
result['reporting_period']['toppeaks'].append(reporting[energy_category_id]['toppeak']) |
509
|
|
|
result['reporting_period']['onpeaks'].append(reporting[energy_category_id]['onpeak']) |
510
|
|
|
result['reporting_period']['midpeaks'].append(reporting[energy_category_id]['midpeak']) |
511
|
|
|
result['reporting_period']['offpeaks'].append(reporting[energy_category_id]['offpeak']) |
512
|
|
|
result['reporting_period']['increment_rates'].append( |
513
|
|
|
(reporting[energy_category_id]['subtotal'] - base[energy_category_id]['subtotal']) / |
514
|
|
|
base[energy_category_id]['subtotal'] |
515
|
|
|
if base[energy_category_id]['subtotal'] > 0.0 else None) |
516
|
|
|
result['reporting_period']['total'] += reporting[energy_category_id]['subtotal'] |
517
|
|
|
|
518
|
|
|
result['reporting_period']['total_per_unit_area'] = \ |
519
|
|
|
result['reporting_period']['total'] / store['area'] if store['area'] > 0.0 else None |
520
|
|
|
|
521
|
|
|
result['reporting_period']['total_increment_rate'] = \ |
522
|
|
|
(result['reporting_period']['total'] - result['base_period']['total']) / \ |
523
|
|
|
result['base_period']['total'] \ |
524
|
|
|
if result['base_period']['total'] > Decimal(0.0) else None |
525
|
|
|
|
526
|
|
|
result['parameters'] = { |
527
|
|
|
"names": parameters_data['names'], |
528
|
|
|
"timestamps": parameters_data['timestamps'], |
529
|
|
|
"values": parameters_data['values'] |
530
|
|
|
} |
531
|
|
|
# export result to Excel file and then encode the file to base64 string |
532
|
|
|
result['excel_bytes_base64'] = excelexporters.storecost.export(result, |
533
|
|
|
store['name'], |
534
|
|
|
reporting_start_datetime_local, |
535
|
|
|
reporting_end_datetime_local, |
536
|
|
|
period_type) |
537
|
|
|
resp.body = json.dumps(result) |
538
|
|
|
|