reports.combinedequipmentload.Reporting.on_get()   F
last analyzed

Complexity

Conditions 95

Size

Total Lines 496
Code Lines 374

Duplication

Lines 496
Ratio 100 %

Importance

Changes 0
Metric Value
cc 95
eloc 374
nop 2
dl 496
loc 496
rs 0
c 0
b 0
f 0

How to fix   Long Method    Complexity   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

Complexity

Complex classes like reports.combinedequipmentload.Reporting.on_get() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import falcon
2
import simplejson as json
3
import mysql.connector
4
import config
5
from datetime import datetime, timedelta, timezone
6
from core import utilities
7
from decimal import Decimal
8
9
10 View Code Duplication
class Reporting:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
11
    @staticmethod
12
    def __init__():
13
        pass
14
15
    @staticmethod
16
    def on_options(req, resp):
17
        resp.status = falcon.HTTP_200
18
19
    ####################################################################################################################
20
    # PROCEDURES
21
    # Step 1: valid parameters
22
    # Step 2: query the combined equipment
23
    # Step 3: query energy categories
24
    # Step 4: query associated points
25
    # Step 5: query base period energy input
26
    # Step 6: query reporting period energy input
27
    # Step 7: query tariff data
28
    # Step 8: query associated points data
29
    # Step 9: construct the report
30
    ####################################################################################################################
31
    @staticmethod
32
    def on_get(req, resp):
33
        print(req.params)
34
        combined_equipment_id = req.params.get('combinedequipmentid')
35
        period_type = req.params.get('periodtype')
36
        base_start_datetime_local = req.params.get('baseperiodstartdatetime')
37
        base_end_datetime_local = req.params.get('baseperiodenddatetime')
38
        reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime')
39
        reporting_end_datetime_local = req.params.get('reportingperiodenddatetime')
40
41
        ################################################################################################################
42
        # Step 1: valid parameters
43
        ################################################################################################################
44
        if combined_equipment_id is None:
45
            raise falcon.HTTPError(falcon.HTTP_400,
46
                                   title='API.BAD_REQUEST',
47
                                   description='API.INVALID_COMBINED_EQUIPMENT_ID')
48
        else:
49
            combined_equipment_id = str.strip(combined_equipment_id)
50
            if not combined_equipment_id.isdigit() or int(combined_equipment_id) <= 0:
51
                raise falcon.HTTPError(falcon.HTTP_400,
52
                                       title='API.BAD_REQUEST',
53
                                       description='API.INVALID_COMBINED_EQUIPMENT_ID')
54
55
        if period_type is None:
56
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
57
        else:
58
            period_type = str.strip(period_type)
59
            if period_type not in ['hourly', 'daily', 'monthly', 'yearly']:
60
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
61
62
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
63
        if config.utc_offset[0] == '-':
64
            timezone_offset = -timezone_offset
65
66
        base_start_datetime_utc = None
67
        if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0:
68
            base_start_datetime_local = str.strip(base_start_datetime_local)
69
            try:
70
                base_start_datetime_utc = datetime.strptime(base_start_datetime_local,
71
                                                            '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
72
                    timedelta(minutes=timezone_offset)
73
            except ValueError:
74
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
75
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
76
77
        base_end_datetime_utc = None
78
        if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0:
79
            base_end_datetime_local = str.strip(base_end_datetime_local)
80
            try:
81
                base_end_datetime_utc = datetime.strptime(base_end_datetime_local,
82
                                                          '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
83
                    timedelta(minutes=timezone_offset)
84
            except ValueError:
85
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
86
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
87
88
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
89
                base_start_datetime_utc >= base_end_datetime_utc:
90
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
91
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
92
93
        if reporting_start_datetime_local is None:
94
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
95
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
96
        else:
97
            reporting_start_datetime_local = str.strip(reporting_start_datetime_local)
98
            try:
99
                reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local,
100
                                                                 '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
101
                    timedelta(minutes=timezone_offset)
102
            except ValueError:
103
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
104
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
105
106
        if reporting_end_datetime_local is None:
107
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
108
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
109
        else:
110
            reporting_end_datetime_local = str.strip(reporting_end_datetime_local)
111
            try:
112
                reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local,
113
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
114
                    timedelta(minutes=timezone_offset)
115
            except ValueError:
116
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
117
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
118
119
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
120
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
121
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
122
123
        ################################################################################################################
124
        # Step 2: query the combined equipment
125
        ################################################################################################################
126
        cnx_system = mysql.connector.connect(**config.myems_system_db)
127
        cursor_system = cnx_system.cursor()
128
129
        cnx_energy = mysql.connector.connect(**config.myems_energy_db)
130
        cursor_energy = cnx_energy.cursor()
131
132
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
133
        cursor_historical = cnx_historical.cursor()
134
135
        cursor_system.execute(" SELECT id, name, cost_center_id "
136
                              " FROM tbl_combined_equipments "
137
                              " WHERE id = %s ", (combined_equipment_id,))
138
        row_combined_equipment = cursor_system.fetchone()
139
        if row_combined_equipment is None:
140
            if cursor_system:
141
                cursor_system.close()
142
            if cnx_system:
143
                cnx_system.disconnect()
144
145
            if cursor_energy:
146
                cursor_energy.close()
147
            if cnx_energy:
148
                cnx_energy.disconnect()
149
150
            if cnx_historical:
151
                cnx_historical.close()
152
            if cursor_historical:
153
                cursor_historical.disconnect()
154
            raise falcon.HTTPError(falcon.HTTP_404,
155
                                   title='API.NOT_FOUND',
156
                                   description='API.COMBINED_EQUIPMENT_NOT_FOUND')
157
158
        combined_equipment = dict()
159
        combined_equipment['id'] = row_combined_equipment[0]
160
        combined_equipment['name'] = row_combined_equipment[1]
161
        combined_equipment['cost_center_id'] = row_combined_equipment[2]
162
163
        ################################################################################################################
164
        # Step 3: query energy categories
165
        ################################################################################################################
166
        energy_category_set = set()
167
        # query energy categories in base period
168
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
169
                              " FROM tbl_combined_equipment_input_category_hourly "
170
                              " WHERE combined_equipment_id = %s "
171
                              "     AND start_datetime_utc >= %s "
172
                              "     AND start_datetime_utc < %s ",
173
                              (combined_equipment['id'], base_start_datetime_utc, base_end_datetime_utc))
174
        rows_energy_categories = cursor_energy.fetchall()
175
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
176
            for row_energy_category in rows_energy_categories:
177
                energy_category_set.add(row_energy_category[0])
178
179
        # query energy categories in reporting period
180
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
181
                              " FROM tbl_combined_equipment_input_category_hourly "
182
                              " WHERE combined_equipment_id = %s "
183
                              "     AND start_datetime_utc >= %s "
184
                              "     AND start_datetime_utc < %s ",
185
                              (combined_equipment['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
186
        rows_energy_categories = cursor_energy.fetchall()
187
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
188
            for row_energy_category in rows_energy_categories:
189
                energy_category_set.add(row_energy_category[0])
190
191
        # query all energy categories in base period and reporting period
192
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
193
                              " FROM tbl_energy_categories "
194
                              " ORDER BY id ", )
195
        rows_energy_categories = cursor_system.fetchall()
196
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
197
            if cursor_system:
198
                cursor_system.close()
199
            if cnx_system:
200
                cnx_system.disconnect()
201
202
            if cursor_energy:
203
                cursor_energy.close()
204
            if cnx_energy:
205
                cnx_energy.disconnect()
206
207
            if cnx_historical:
208
                cnx_historical.close()
209
            if cursor_historical:
210
                cursor_historical.disconnect()
211
            raise falcon.HTTPError(falcon.HTTP_404,
212
                                   title='API.NOT_FOUND',
213
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
214
        energy_category_dict = dict()
215
        for row_energy_category in rows_energy_categories:
216
            if row_energy_category[0] in energy_category_set:
217
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
218
                                                                "unit_of_measure": row_energy_category[2],
219
                                                                "kgce": row_energy_category[3],
220
                                                                "kgco2e": row_energy_category[4]}
221
222
        ################################################################################################################
223
        # Step 4: query associated points
224
        ################################################################################################################
225
        point_list = list()
226
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
227
                              " FROM tbl_combined_equipments e, tbl_combined_equipments_parameters ep, tbl_points p "
228
                              " WHERE e.id = %s AND e.id = ep.combined_equipment_id AND ep.parameter_type = 'point' "
229
                              "       AND ep.point_id = p.id "
230
                              " ORDER BY p.id ", (combined_equipment['id'],))
231
        rows_points = cursor_system.fetchall()
232
        if rows_points is not None and len(rows_points) > 0:
233
            for row in rows_points:
234
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
235
236
        ################################################################################################################
237
        # Step 6: query base period energy input
238
        ################################################################################################################
239
        base = dict()
240
        if energy_category_set is not None and len(energy_category_set) > 0:
241
            for energy_category_id in energy_category_set:
242
                base[energy_category_id] = dict()
243
                base[energy_category_id]['timestamps'] = list()
244
                base[energy_category_id]['sub_averages'] = list()
245
                base[energy_category_id]['sub_maximums'] = list()
246
                base[energy_category_id]['average'] = None
247
                base[energy_category_id]['maximum'] = None
248
                base[energy_category_id]['factor'] = None
249
250
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
251
                                      " FROM tbl_combined_equipment_input_category_hourly "
252
                                      " WHERE combined_equipment_id = %s "
253
                                      "     AND energy_category_id = %s "
254
                                      "     AND start_datetime_utc >= %s "
255
                                      "     AND start_datetime_utc < %s "
256
                                      " ORDER BY start_datetime_utc ",
257
                                      (combined_equipment['id'],
258
                                       energy_category_id,
259
                                       base_start_datetime_utc,
260
                                       base_end_datetime_utc))
261
                rows_combined_equipment_hourly = cursor_energy.fetchall()
262
263
                rows_combined_equipment_periodically, \
264
                    base[energy_category_id]['average'], \
265
                    base[energy_category_id]['maximum'] = \
266
                    utilities.averaging_hourly_data_by_period(rows_combined_equipment_hourly,
267
                                                              base_start_datetime_utc,
268
                                                              base_end_datetime_utc,
269
                                                              period_type)
270
                base[energy_category_id]['factor'] = \
271
                    (base[energy_category_id]['average'] / base[energy_category_id]['maximum']
272
                        if (base[energy_category_id]['average'] is not None and
273
                            base[energy_category_id]['maximum'] is not None and
274
                            base[energy_category_id]['maximum'] > Decimal(0.0))
275
                        else None)
276
277
                for row_combined_equipment_periodically in rows_combined_equipment_periodically:
278
                    current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \
279
                                             timedelta(minutes=timezone_offset)
280
                    if period_type == 'hourly':
281
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
282
                    elif period_type == 'daily':
283
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
284
                    elif period_type == 'monthly':
285
                        current_datetime = current_datetime_local.strftime('%Y-%m')
286
                    elif period_type == 'yearly':
287
                        current_datetime = current_datetime_local.strftime('%Y')
288
289
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
introduced by
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
290
                    base[energy_category_id]['sub_averages'].append(row_combined_equipment_periodically[1])
291
                    base[energy_category_id]['sub_maximums'].append(row_combined_equipment_periodically[2])
292
293
        ################################################################################################################
294
        # Step 7: query reporting period energy input
295
        ################################################################################################################
296
        reporting = dict()
297
        if energy_category_set is not None and len(energy_category_set) > 0:
298
            for energy_category_id in energy_category_set:
299
                reporting[energy_category_id] = dict()
300
                reporting[energy_category_id]['timestamps'] = list()
301
                reporting[energy_category_id]['sub_averages'] = list()
302
                reporting[energy_category_id]['sub_maximums'] = list()
303
                reporting[energy_category_id]['average'] = None
304
                reporting[energy_category_id]['maximum'] = None
305
                reporting[energy_category_id]['factor'] = None
306
307
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
308
                                      " FROM tbl_combined_equipment_input_category_hourly "
309
                                      " WHERE combined_equipment_id = %s "
310
                                      "     AND energy_category_id = %s "
311
                                      "     AND start_datetime_utc >= %s "
312
                                      "     AND start_datetime_utc < %s "
313
                                      " ORDER BY start_datetime_utc ",
314
                                      (combined_equipment['id'],
315
                                       energy_category_id,
316
                                       reporting_start_datetime_utc,
317
                                       reporting_end_datetime_utc))
318
                rows_combined_equipment_hourly = cursor_energy.fetchall()
319
320
                rows_combined_equipment_periodically, \
321
                    reporting[energy_category_id]['average'], \
322
                    reporting[energy_category_id]['maximum'] = \
323
                    utilities.averaging_hourly_data_by_period(rows_combined_equipment_hourly,
324
                                                              reporting_start_datetime_utc,
325
                                                              reporting_end_datetime_utc,
326
                                                              period_type)
327
                reporting[energy_category_id]['factor'] = \
328
                    (reporting[energy_category_id]['average'] / reporting[energy_category_id]['maximum']
329
                     if (reporting[energy_category_id]['average'] is not None and
330
                         reporting[energy_category_id]['maximum'] is not None and
331
                         reporting[energy_category_id]['maximum'] > Decimal(0.0))
332
                     else None)
333
334
                for row_combined_equipment_periodically in rows_combined_equipment_periodically:
335
                    current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \
336
                                             timedelta(minutes=timezone_offset)
337
                    if period_type == 'hourly':
338
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
339
                    elif period_type == 'daily':
340
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
341
                    elif period_type == 'monthly':
342
                        current_datetime = current_datetime_local.strftime('%Y-%m')
343
                    elif period_type == 'yearly':
344
                        current_datetime = current_datetime_local.strftime('%Y')
345
346
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
347
                    reporting[energy_category_id]['sub_averages'].append(row_combined_equipment_periodically[1])
348
                    reporting[energy_category_id]['sub_maximums'].append(row_combined_equipment_periodically[2])
349
350
        ################################################################################################################
351
        # Step 8: query tariff data
352
        ################################################################################################################
353
        parameters_data = dict()
354
        parameters_data['names'] = list()
355
        parameters_data['timestamps'] = list()
356
        parameters_data['values'] = list()
357
        if energy_category_set is not None and len(energy_category_set) > 0:
358
            for energy_category_id in energy_category_set:
359
                energy_category_tariff_dict = \
360
                    utilities.get_energy_category_tariffs(combined_equipment['cost_center_id'],
361
                                                          energy_category_id,
362
                                                          reporting_start_datetime_utc,
363
                                                          reporting_end_datetime_utc)
364
                tariff_timestamp_list = list()
365
                tariff_value_list = list()
366
                for k, v in energy_category_tariff_dict.items():
367
                    # convert k from utc to local
368
                    k = k + timedelta(minutes=timezone_offset)
369
                    tariff_timestamp_list.append(k.isoformat()[0:19][0:19])
370
                    tariff_value_list.append(v)
371
372
                parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name'])
373
                parameters_data['timestamps'].append(tariff_timestamp_list)
374
                parameters_data['values'].append(tariff_value_list)
375
376
        ################################################################################################################
377
        # Step 9: query associated points data
378
        ################################################################################################################
379
        for point in point_list:
380
            point_values = []
381
            point_timestamps = []
382
            if point['object_type'] == 'ANALOG_VALUE':
383
                query = (" SELECT utc_date_time, actual_value "
384
                         " FROM tbl_analog_value "
385
                         " WHERE point_id = %s "
386
                         "       AND utc_date_time BETWEEN %s AND %s "
387
                         " ORDER BY utc_date_time ")
388
                cursor_historical.execute(query, (point['id'],
389
                                                  reporting_start_datetime_utc,
390
                                                  reporting_end_datetime_utc))
391
                rows = cursor_historical.fetchall()
392
393
                if rows is not None and len(rows) > 0:
394
                    for row in rows:
395
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
396
                                                 timedelta(minutes=timezone_offset)
397
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
398
                        point_timestamps.append(current_datetime)
399
                        point_values.append(row[1])
400
401
            elif point['object_type'] == 'ENERGY_VALUE':
402
                query = (" SELECT utc_date_time, actual_value "
403
                         " FROM tbl_energy_value "
404
                         " WHERE point_id = %s "
405
                         "       AND utc_date_time BETWEEN %s AND %s "
406
                         " ORDER BY utc_date_time ")
407
                cursor_historical.execute(query, (point['id'],
408
                                                  reporting_start_datetime_utc,
409
                                                  reporting_end_datetime_utc))
410
                rows = cursor_historical.fetchall()
411
412
                if rows is not None and len(rows) > 0:
413
                    for row in rows:
414
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
415
                                                 timedelta(minutes=timezone_offset)
416
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
417
                        point_timestamps.append(current_datetime)
418
                        point_values.append(row[1])
419
            elif point['object_type'] == 'DIGITAL_VALUE':
420
                query = (" SELECT utc_date_time, actual_value "
421
                         " FROM tbl_digital_value "
422
                         " WHERE point_id = %s "
423
                         "       AND utc_date_time BETWEEN %s AND %s ")
424
                cursor_historical.execute(query, (point['id'],
425
                                                  reporting_start_datetime_utc,
426
                                                  reporting_end_datetime_utc))
427
                rows = cursor_historical.fetchall()
428
429
                if rows is not None and len(rows) > 0:
430
                    for row in rows:
431
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
432
                                                 timedelta(minutes=timezone_offset)
433
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
434
                        point_timestamps.append(current_datetime)
435
                        point_values.append(row[1])
436
437
            parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
438
            parameters_data['timestamps'].append(point_timestamps)
439
            parameters_data['values'].append(point_values)
440
441
        ################################################################################################################
442
        # Step 10: construct the report
443
        ################################################################################################################
444
        if cursor_system:
445
            cursor_system.close()
446
        if cnx_system:
447
            cnx_system.disconnect()
448
449
        if cursor_energy:
450
            cursor_energy.close()
451
        if cnx_energy:
452
            cnx_energy.disconnect()
453
454
        result = dict()
455
456
        result['combined_equipment'] = dict()
457
        result['combined_equipment']['name'] = combined_equipment['name']
458
459
        result['base_period'] = dict()
460
        result['base_period']['names'] = list()
461
        result['base_period']['units'] = list()
462
        result['base_period']['timestamps'] = list()
463
        result['base_period']['sub_averages'] = list()
464
        result['base_period']['sub_maximums'] = list()
465
        result['base_period']['averages'] = list()
466
        result['base_period']['maximums'] = list()
467
        result['base_period']['factors'] = list()
468
        if energy_category_set is not None and len(energy_category_set) > 0:
469
            for energy_category_id in energy_category_set:
470
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
471
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
472
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
473
                result['base_period']['sub_averages'].append(base[energy_category_id]['sub_averages'])
474
                result['base_period']['sub_maximums'].append(base[energy_category_id]['sub_maximums'])
475
                result['base_period']['averages'].append(base[energy_category_id]['average'])
476
                result['base_period']['maximums'].append(base[energy_category_id]['maximum'])
477
                result['base_period']['factors'].append(base[energy_category_id]['factor'])
478
479
        result['reporting_period'] = dict()
480
        result['reporting_period']['names'] = list()
481
        result['reporting_period']['energy_category_ids'] = list()
482
        result['reporting_period']['units'] = list()
483
        result['reporting_period']['timestamps'] = list()
484
        result['reporting_period']['sub_averages'] = list()
485
        result['reporting_period']['sub_maximums'] = list()
486
        result['reporting_period']['averages'] = list()
487
        result['reporting_period']['averages_increment_rate'] = list()
488
        result['reporting_period']['maximums'] = list()
489
        result['reporting_period']['maximums_increment_rate'] = list()
490
        result['reporting_period']['factors'] = list()
491
        result['reporting_period']['factors_increment_rate'] = list()
492
493
        if energy_category_set is not None and len(energy_category_set) > 0:
494
            for energy_category_id in energy_category_set:
495
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
496
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
497
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
498
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
499
                result['reporting_period']['sub_averages'].append(reporting[energy_category_id]['sub_averages'])
500
                result['reporting_period']['sub_maximums'].append(reporting[energy_category_id]['sub_maximums'])
501
                result['reporting_period']['averages'].append(reporting[energy_category_id]['average'])
502
                result['reporting_period']['averages_increment_rate'].append(
503
                    (reporting[energy_category_id]['average'] - base[energy_category_id]['average']) /
504
                    base[energy_category_id]['average'] if (base[energy_category_id]['average'] is not None and
505
                                                            base[energy_category_id]['average'] > Decimal(0.0))
506
                    else None)
507
                result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum'])
508
                result['reporting_period']['maximums_increment_rate'].append(
509
                    (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) /
510
                    base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and
511
                                                            base[energy_category_id]['maximum'] > Decimal(0.0))
512
                    else None)
513
                result['reporting_period']['factors'].append(reporting[energy_category_id]['factor'])
514
                result['reporting_period']['factors_increment_rate'].append(
515
                    (reporting[energy_category_id]['factor'] - base[energy_category_id]['factor']) /
516
                    base[energy_category_id]['factor'] if (base[energy_category_id]['factor'] is not None and
517
                                                           base[energy_category_id]['factor'] > Decimal(0.0))
518
                    else None)
519
520
        result['parameters'] = {
521
            "names": parameters_data['names'],
522
            "timestamps": parameters_data['timestamps'],
523
            "values": parameters_data['values']
524
        }
525
526
        resp.body = json.dumps(result)
527