1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
from __future__ import unicode_literals |
4
|
|
|
from .utils import post_json |
5
|
|
|
from .ds import Sentence, Document |
6
|
|
|
from .processors import Message, SentencesMessage |
7
|
|
|
import json |
8
|
|
|
import six |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
class SentimentAnalysisAPI(object): |
12
|
|
|
""" |
13
|
|
|
API for performing sentiment analysis |
14
|
|
|
""" |
15
|
|
|
def __init__(self, address): |
16
|
|
|
self._service = address |
17
|
|
|
self.corenlp = CoreNLPSentimentAnalyzer(self._service) |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
class SentimentAnalyzer(object): |
21
|
|
|
|
22
|
|
|
def __init__(self, address): |
23
|
|
|
self._service = "{}/sentiment/score".format(address) |
24
|
|
|
self._text_service = self._service |
25
|
|
|
self._segmented_service = self._service |
26
|
|
|
self._sentence_service = self._service |
27
|
|
|
self._document_service = self._service |
28
|
|
|
|
29
|
|
|
def score_document(self, doc): |
30
|
|
|
""" |
31
|
|
|
Sends a Document to the server for sentiment scoring |
32
|
|
|
Returns a list of scores (one for each sentence) |
33
|
|
|
""" |
34
|
|
|
try: |
35
|
|
|
sentiment_scores = post_json(self._document_service, doc.to_JSON()) |
36
|
|
|
return sentiment_scores["scores"] |
37
|
|
|
|
38
|
|
|
except Exception as e: |
39
|
|
|
#print(e) |
40
|
|
|
return None |
41
|
|
|
|
42
|
|
|
def score_sentence(self, sentence): |
43
|
|
|
""" |
44
|
|
|
Sends a Sentence to the server for sentiment scoring |
45
|
|
|
Returns a single score |
46
|
|
|
""" |
47
|
|
|
try: |
48
|
|
|
sentiment_scores = post_json(self._sentence_service, sentence.to_JSON()) |
49
|
|
|
return sentiment_scores["scores"][0] |
50
|
|
|
|
51
|
|
|
except Exception as e: |
52
|
|
|
print(e) |
53
|
|
|
return None |
54
|
|
|
|
55
|
|
|
def score_segmented_text(self, sentences): |
56
|
|
|
""" |
57
|
|
|
Sends segmented text to the server for sentiment scoring |
58
|
|
|
Returns a score for each sentence |
59
|
|
|
""" |
60
|
|
|
try: |
61
|
|
|
msg = SentencesMessage(sentences) |
62
|
|
|
sentiment_scores = post_json(self._segmented_service, msg.to_JSON()) |
63
|
|
|
return sentiment_scores["scores"] |
64
|
|
|
|
65
|
|
|
except Exception as e: |
66
|
|
|
#print(e) |
67
|
|
|
return None |
68
|
|
|
|
69
|
|
|
def score_text(self, text): |
70
|
|
|
""" |
71
|
|
|
Sends text to the server for sentiment scoring |
72
|
|
|
Returns a list of scores (one for each sentence) |
73
|
|
|
""" |
74
|
|
|
service = self._text_service |
75
|
|
|
try: |
76
|
|
|
msg = Message(text) |
77
|
|
|
sentiment_scores = post_json(self._text_service, msg.to_JSON()) |
78
|
|
|
return sentiment_scores["scores"] |
79
|
|
|
|
80
|
|
|
except Exception as e: |
81
|
|
|
#print(e) |
82
|
|
|
return None |
83
|
|
|
|
84
|
|
|
def score(self, data): |
85
|
|
|
""" |
86
|
|
|
Sniff out data type and to properly send to the server for sentiment scoring |
87
|
|
|
""" |
88
|
|
|
if isinstance(data, six.text_type): |
89
|
|
|
return self.score_text(data) |
90
|
|
|
elif isinstance(data, Sentence): |
91
|
|
|
return self.score_sentence(data) |
92
|
|
|
elif isinstance(data, Document): |
93
|
|
|
return self.score_document(data) |
94
|
|
|
# a list of pre segmented sentences |
95
|
|
|
elif isinstance(data, list): |
96
|
|
|
return self.score_segmented_text(data) |
97
|
|
|
else: |
98
|
|
|
#print("Type of data: {}".format(type(data))) |
99
|
|
|
return None |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
class CoreNLPSentimentAnalyzer(SentimentAnalyzer): |
103
|
|
|
""" |
104
|
|
|
Bridge to CoreNLP's tree-based sentiment analysis |
105
|
|
|
""" |
106
|
|
|
def __init__(self, address): |
107
|
|
|
self._service = "{}/sentiment/corenlp/score".format(address) |
108
|
|
|
self._text_service = self._service |
109
|
|
|
self._segmented_service = "{}/segmented".format(self._service) |
110
|
|
|
self._sentence_service = self._service |
111
|
|
|
self._document_service = self._service |
112
|
|
|
|