|
1
|
|
|
""" |
|
2
|
|
|
KnowYourData |
|
3
|
|
|
============ |
|
4
|
|
|
|
|
5
|
|
|
A rapid and lightweight module to describe the statistics and structure of |
|
6
|
|
|
data arrays for interactive use. |
|
7
|
|
|
|
|
8
|
|
|
The most simple use case to display data is if you have a numpy array 'x': |
|
9
|
|
|
|
|
10
|
|
|
>>> from knowyourdata import kyd |
|
11
|
|
|
>>> kyd(x) |
|
12
|
|
|
|
|
13
|
|
|
""" |
|
14
|
|
|
|
|
15
|
|
|
import sys |
|
16
|
|
|
import numpy as np |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class KYD(object): |
|
|
|
|
|
|
20
|
|
|
"""The Central Class for KYD""" |
|
21
|
|
|
|
|
22
|
|
|
# Variable for Data Vector |
|
23
|
|
|
data = None |
|
24
|
|
|
|
|
25
|
|
|
# Initial Flags |
|
26
|
|
|
f_allfinite = False |
|
27
|
|
|
f_allnonfinite = False |
|
28
|
|
|
f_hasnan = False |
|
29
|
|
|
f_hasinf = False |
|
30
|
|
|
|
|
31
|
|
|
# Display Settings |
|
32
|
|
|
col_width = 10 |
|
33
|
|
|
precision = 4 |
|
34
|
|
|
|
|
35
|
|
|
def check_finite(self): |
|
36
|
|
|
"""Checking to see if all elements are finite and setting flags""" |
|
37
|
|
|
if np.all(np.isfinite(self.data)): |
|
38
|
|
|
self.filt_data = self.data |
|
39
|
|
|
self.f_allfinite = True |
|
40
|
|
|
else: |
|
41
|
|
|
finite_inds = np.where(np.isfinite(self.data)) |
|
42
|
|
|
|
|
43
|
|
|
self.filt_data = self.data[finite_inds] |
|
44
|
|
|
|
|
45
|
|
|
if self.filt_data.size == 0: |
|
46
|
|
|
self.f_allnonfinite = True |
|
47
|
|
|
|
|
48
|
|
|
if np.any(np.isnan(self.data)): |
|
49
|
|
|
self.f_hasnan = True |
|
50
|
|
|
if np.any(np.isinf(self.data)): |
|
51
|
|
|
self.f_hasinf = True |
|
52
|
|
|
|
|
53
|
|
|
def check_struct(self): |
|
54
|
|
|
"""Determining the Structure of the Numpy Array""" |
|
55
|
|
|
self.dtype = self.data.dtype |
|
56
|
|
|
self.ndim = self.data.ndim |
|
57
|
|
|
self.shape = self.data.shape |
|
58
|
|
|
self.size = self.data.size |
|
59
|
|
|
self.memsize = sys.getsizeof(self.data) |
|
60
|
|
|
self.human_memsize = sizeof_fmt(self.memsize) |
|
61
|
|
|
|
|
62
|
|
|
def get_basic_stats(self): |
|
63
|
|
|
"""Get basic statistics about array""" |
|
64
|
|
|
|
|
65
|
|
|
if self.f_allnonfinite: |
|
66
|
|
|
self.min = self.max = self.range = np.nan |
|
67
|
|
|
self.mean = self.std = self.median = np.nan |
|
68
|
|
|
self.firstquartile = self.thirdquartile = np.nan |
|
69
|
|
|
self.cl_68 = self.cl_95 = self.cl_99 = np.array([np.nan, np.nan]) |
|
70
|
|
|
|
|
71
|
|
|
return |
|
72
|
|
|
|
|
73
|
|
|
self.min = np.float_(np.min(self.filt_data)) |
|
74
|
|
|
self.max = np.float_(np.max(self.filt_data)) |
|
75
|
|
|
self.range = self.max - self.min |
|
76
|
|
|
self.mean = np.mean(self.filt_data) |
|
77
|
|
|
self.std = np.std(self.filt_data) |
|
78
|
|
|
self.median = np.float_(np.median(self.filt_data)) |
|
79
|
|
|
self.firstquartile = np.float_(np.percentile(self.filt_data, 25)) |
|
80
|
|
|
self.thirdquartile = np.float_(np.percentile(self.filt_data, 75)) |
|
81
|
|
|
self.cl_99 = np.float_( |
|
82
|
|
|
np.percentile(self.filt_data, np.array([0.5, 99.5]))) |
|
83
|
|
|
self.cl_95 = np.float_( |
|
84
|
|
|
np.percentile(self.filt_data, np.array([2.5, 97.5]))) |
|
85
|
|
|
self.cl_68 = np.float_( |
|
86
|
|
|
np.percentile(self.filt_data, np.array([16.0, 84.0]))) |
|
87
|
|
|
|
|
88
|
|
|
def display_basic_stats(self): |
|
89
|
|
|
"""Display basic statistics of array""" |
|
90
|
|
|
pstr_list = [] |
|
91
|
|
|
|
|
92
|
|
|
# Heading for Section |
|
93
|
|
|
|
|
94
|
|
|
pstr_struct_header1 = '\033[1m' + "Basic Statistics " + '\033[0m' |
|
95
|
|
|
pstr_struct_header2 = '' |
|
96
|
|
|
|
|
97
|
|
|
pstr_list.append(pstr_struct_header1) |
|
98
|
|
|
pstr_list.append(pstr_struct_header2) |
|
99
|
|
|
|
|
100
|
|
|
# Mean and Standard Deviation |
|
101
|
|
|
|
|
102
|
|
|
pstr_meanstdhead = ( |
|
103
|
|
|
"{0:^15}" |
|
104
|
|
|
"{1:^15}" |
|
105
|
|
|
).format("Mean", "Std Dev") |
|
106
|
|
|
pstr_meanstdhead = ( |
|
107
|
|
|
"{0:^{self.col_width}}" |
|
108
|
|
|
).format(pstr_meanstdhead, self=self) |
|
109
|
|
|
pstr_list.append(pstr_meanstdhead) |
|
110
|
|
|
|
|
111
|
|
|
pstr_meanstdstat = ( |
|
112
|
|
|
"{self.mean:^15.{self.precision}}" |
|
113
|
|
|
"{self.std:^15.{self.precision}}" |
|
114
|
|
|
).format(self=self) |
|
115
|
|
|
pstr_meanstdstat = ( |
|
116
|
|
|
"{0:^{self.col_width}}" |
|
117
|
|
|
).format(pstr_meanstdstat, self=self) |
|
118
|
|
|
pstr_list.append(pstr_meanstdstat) |
|
119
|
|
|
|
|
120
|
|
|
pstr_list.append("") |
|
121
|
|
|
|
|
122
|
|
|
# Three point statistics |
|
123
|
|
|
|
|
124
|
|
|
pstr_3pthead = ( |
|
125
|
|
|
"{0:^10}" |
|
126
|
|
|
"{1:^10}" |
|
127
|
|
|
"{2:^10}" |
|
128
|
|
|
"{3:^10}" |
|
129
|
|
|
"{4:^10}" |
|
130
|
|
|
).format('Min', '1Q', 'Median', '3Q', 'Max') |
|
131
|
|
|
pstr_3pthead = ( |
|
132
|
|
|
"{0:^{self.col_width}}" |
|
133
|
|
|
).format(pstr_3pthead, self=self) |
|
134
|
|
|
pstr_list.append(pstr_3pthead) |
|
135
|
|
|
|
|
136
|
|
|
pstr_3ptstat = ( |
|
137
|
|
|
"{self.min:^10.{self.precision}}" |
|
138
|
|
|
"{self.firstquartile:^10.{self.precision}}" |
|
139
|
|
|
"{self.median:^10.{self.precision}}" |
|
140
|
|
|
"{self.thirdquartile:^10.{self.precision}}" |
|
141
|
|
|
"{self.max:^10.{self.precision}}" |
|
142
|
|
|
).format(self=self) |
|
143
|
|
|
pstr_3ptstat = ( |
|
144
|
|
|
"{0:^{self.col_width}}" |
|
145
|
|
|
).format(pstr_3ptstat, self=self) |
|
146
|
|
|
pstr_list.append(pstr_3ptstat) |
|
147
|
|
|
|
|
148
|
|
|
pstr_list.append("") |
|
149
|
|
|
|
|
150
|
|
|
# Confidence Levels |
|
151
|
|
|
|
|
152
|
|
|
pstr_clhead = ( |
|
153
|
|
|
"{0:^10}" |
|
154
|
|
|
"{1:^10}" |
|
155
|
|
|
"{2:^10}" |
|
156
|
|
|
"{3:^10}" |
|
157
|
|
|
"{4:^10}" |
|
158
|
|
|
"{5:^10}" |
|
159
|
|
|
).format('-99 CL', '-95 CL', '-68 CL', '+68 CL', '+95 CL', '+99 CL') |
|
160
|
|
|
pstr_clhead = ( |
|
161
|
|
|
"{0:^{self.col_width}}" |
|
162
|
|
|
).format(pstr_clhead, self=self) |
|
163
|
|
|
pstr_list.append(pstr_clhead) |
|
164
|
|
|
|
|
165
|
|
|
pstr_clstat = ( |
|
166
|
|
|
"{self.cl_99[0]:^10.{self.precision}}" |
|
167
|
|
|
"{self.cl_95[0]:^10.{self.precision}}" |
|
168
|
|
|
"{self.cl_68[0]:^10.{self.precision}}" |
|
169
|
|
|
"{self.cl_68[1]:^10.{self.precision}}" |
|
170
|
|
|
"{self.cl_95[1]:^10.{self.precision}}" |
|
171
|
|
|
"{self.cl_99[1]:^10.{self.precision}}" |
|
172
|
|
|
).format(self=self) |
|
173
|
|
|
pstr_clstat = ( |
|
174
|
|
|
"{0:^{self.col_width}}" |
|
175
|
|
|
).format(pstr_clstat, self=self) |
|
176
|
|
|
pstr_list.append(pstr_clstat) |
|
177
|
|
|
|
|
178
|
|
|
return pstr_list |
|
179
|
|
|
|
|
180
|
|
|
def display_struct(self): |
|
181
|
|
|
"""Display information about array structure""" |
|
182
|
|
|
|
|
183
|
|
|
pstr_list = [] |
|
184
|
|
|
|
|
185
|
|
|
# pstr_struct_header0 = "................." |
|
186
|
|
|
pstr_struct_header1 = '\033[1m' + "Array Structure " + '\033[0m' |
|
187
|
|
|
pstr_struct_header2 = " " |
|
188
|
|
|
|
|
189
|
|
|
# pstr_list.append(pstr_struct_header0) |
|
190
|
|
|
pstr_list.append(pstr_struct_header1) |
|
191
|
|
|
pstr_list.append(pstr_struct_header2) |
|
192
|
|
|
|
|
193
|
|
|
pstr_n_dim = ( |
|
194
|
|
|
"Number of Dimensions:\t" |
|
195
|
|
|
"{self.ndim}").format( |
|
196
|
|
|
self=self) |
|
197
|
|
|
pstr_list.append(pstr_n_dim) |
|
198
|
|
|
|
|
199
|
|
|
pstr_shape = ( |
|
200
|
|
|
"Shape of Dimensions:\t" |
|
201
|
|
|
"{self.shape}").format( |
|
202
|
|
|
self=self) |
|
203
|
|
|
pstr_list.append(pstr_shape) |
|
204
|
|
|
|
|
205
|
|
|
pstr_dtype = ( |
|
206
|
|
|
"Array Data Type:\t" |
|
207
|
|
|
"{self.dtype}").format( |
|
208
|
|
|
self=self) |
|
209
|
|
|
pstr_list.append(pstr_dtype) |
|
210
|
|
|
|
|
211
|
|
|
pstr_memsize = ( |
|
212
|
|
|
"Memory Size:\t\t" |
|
213
|
|
|
"{self.human_memsize}").format( |
|
214
|
|
|
self=self) |
|
215
|
|
|
pstr_list.append(pstr_memsize) |
|
216
|
|
|
|
|
217
|
|
|
return pstr_list |
|
218
|
|
|
|
|
219
|
|
|
def display(self, short=False): |
|
220
|
|
|
"""Displaying all relevant statistics""" |
|
221
|
|
|
|
|
222
|
|
|
if short: |
|
223
|
|
|
pass |
|
224
|
|
|
|
|
225
|
|
|
print("") |
|
226
|
|
|
pstr_basic = self.display_basic_stats() |
|
227
|
|
|
pstr_struct = self.display_struct() |
|
228
|
|
|
n_basic = len(pstr_basic) |
|
229
|
|
|
n_struct = len(pstr_struct) |
|
230
|
|
|
|
|
231
|
|
|
l_colwidth = max([len(x) for x in pstr_basic]) + 1 |
|
232
|
|
|
|
|
233
|
|
|
r_colwidth = max([len(x) for x in pstr_struct]) + 2 |
|
234
|
|
|
|
|
235
|
|
|
# new_colwidth = self.col_width + 20 |
|
236
|
|
|
|
|
237
|
|
|
# Finding the longest string |
|
238
|
|
|
len_list = max([n_basic, n_struct]) |
|
239
|
|
|
|
|
240
|
|
|
for i in range(len_list): |
|
241
|
|
|
tmp_str = '| ' |
|
242
|
|
|
if i < n_basic: |
|
243
|
|
|
tmp_str += (pstr_basic[i].ljust(l_colwidth)) |
|
244
|
|
|
else: |
|
245
|
|
|
tmp_str += ''.ljust(l_colwidth) |
|
246
|
|
|
tmp_str += '\t| ' |
|
247
|
|
|
|
|
248
|
|
|
if i < n_struct: |
|
249
|
|
|
tmp_str += (pstr_struct[i].expandtabs().ljust(r_colwidth)) |
|
250
|
|
|
else: |
|
251
|
|
|
tmp_str += ''.ljust(r_colwidth) |
|
252
|
|
|
tmp_str += '\t|' |
|
253
|
|
|
|
|
254
|
|
|
print(tmp_str) |
|
255
|
|
|
|
|
256
|
|
|
print("") |
|
257
|
|
|
|
|
258
|
|
|
def clear_memory(self): |
|
259
|
|
|
"""Ensuring the Numpy Array does not exist in memory""" |
|
260
|
|
|
del self.data |
|
261
|
|
|
del self.filt_data |
|
262
|
|
|
|
|
263
|
|
|
def __init__(self, data): |
|
264
|
|
|
super(KYD, self).__init__() |
|
265
|
|
|
|
|
266
|
|
|
# Ensuring that the array is a numpy array |
|
267
|
|
|
if not isinstance(data, np.ndarray): |
|
268
|
|
|
data = np.array(data) |
|
269
|
|
|
|
|
270
|
|
|
self.data = data |
|
271
|
|
|
|
|
272
|
|
|
self.check_finite() |
|
273
|
|
|
self.check_struct() |
|
274
|
|
|
self.get_basic_stats() |
|
275
|
|
|
self.clear_memory() |
|
276
|
|
|
|
|
277
|
|
|
|
|
278
|
|
|
def sizeof_fmt(num, suffix='B'): |
|
279
|
|
|
"""Return human readable version of in-memory size. |
|
280
|
|
|
Code from Fred Cirera from Stack Overflow: |
|
281
|
|
|
https://stackoverflow.com/questions/1094841/reusable-library-to-get-human-readable-version-of-file-size |
|
282
|
|
|
""" |
|
283
|
|
|
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']: |
|
284
|
|
|
if abs(num) < 1024.0: |
|
285
|
|
|
return "%3.1f%s%s" % (num, unit, suffix) |
|
286
|
|
|
num /= 1024.0 |
|
287
|
|
|
return "%.1f%s%s" % (num, 'Yi', suffix) |
|
288
|
|
|
|
|
289
|
|
|
|
|
290
|
|
|
def kyd(data, full_statistics=False): |
|
291
|
|
|
"""Print statistics of any numpy array |
|
292
|
|
|
|
|
293
|
|
|
data -- Numpy Array of Data |
|
294
|
|
|
|
|
295
|
|
|
Keyword arguments: |
|
296
|
|
|
full_statistics -- printing all detailed statistics of the sources |
|
297
|
|
|
(Currently Not Implemented) |
|
298
|
|
|
|
|
299
|
|
|
""" |
|
300
|
|
|
|
|
301
|
|
|
data_kyd = KYD(data) |
|
302
|
|
|
if full_statistics: |
|
303
|
|
|
data_kyd.display() |
|
304
|
|
|
else: |
|
305
|
|
|
data_kyd.display(short=True) |
|
306
|
|
|
|
|
307
|
|
|
return data_kyd |
|
308
|
|
|
|