Total Complexity | 88 |
Total Lines | 503 |
Duplicated Lines | 0 % |
Changes | 0 |
Complex classes like LineString often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use LineString, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
16 | class LineString extends Curve |
||
17 | { |
||
18 | |||
19 | public function geometryType() |
||
20 | { |
||
21 | return Geometry::LINE_STRING; |
||
22 | } |
||
23 | |||
24 | /** |
||
25 | * Constructor |
||
26 | * |
||
27 | * @param Point[] $points An array of at least two points with |
||
28 | * which to build the LineString |
||
29 | * @throws \Exception |
||
30 | */ |
||
31 | public function __construct($points = []) |
||
32 | { |
||
33 | parent::__construct($points); |
||
34 | } |
||
35 | |||
36 | public static function fromArray($array) |
||
37 | { |
||
38 | $points = []; |
||
39 | foreach ($array as $point) { |
||
40 | $points[] = Point::fromArray($point); |
||
|
|||
41 | } |
||
42 | return new static($points); |
||
43 | } |
||
44 | |||
45 | /** |
||
46 | * Returns the number of points of the LineString |
||
47 | * |
||
48 | * @return int |
||
49 | */ |
||
50 | public function numPoints() |
||
51 | { |
||
52 | return count($this->components); |
||
53 | } |
||
54 | |||
55 | /** |
||
56 | * Returns the 1-based Nth point of the LineString. |
||
57 | * Negative values are counted backwards from the end of the LineString. |
||
58 | * |
||
59 | * @param int $n Nth point of the LineString |
||
60 | * @return Point|null |
||
61 | */ |
||
62 | public function pointN($n) |
||
63 | { |
||
64 | return $n >= 0 |
||
65 | ? $this->geometryN($n) |
||
66 | : $this->geometryN(count($this->components) - abs($n + 1)); |
||
67 | } |
||
68 | |||
69 | public function centroid() |
||
70 | { |
||
71 | return $this->getCentroidAndLength(); |
||
72 | } |
||
73 | |||
74 | public function getCentroidAndLength(&$length = 0.0) |
||
75 | { |
||
76 | if ($this->isEmpty()) { |
||
77 | return new Point(); |
||
78 | } |
||
79 | |||
80 | if ($this->getGeos()) { |
||
81 | // @codeCoverageIgnoreStart |
||
82 | /** @noinspection PhpUndefinedMethodInspection */ |
||
83 | return geoPHP::geosToGeometry($this->getGeos()->centroid()); |
||
84 | // @codeCoverageIgnoreEnd |
||
85 | } |
||
86 | |||
87 | $x = 0; |
||
88 | $y = 0; |
||
89 | $length = 0.0; |
||
90 | /** @var Point $previousPoint */ |
||
91 | $previousPoint = null; |
||
92 | foreach ($this->getPoints() as $point) { |
||
93 | if ($previousPoint) { |
||
94 | // Equivalent to $previousPoint->distance($point) but much faster |
||
95 | $segmentLength = sqrt( |
||
96 | pow(($previousPoint->x() - $point->x()), 2) + |
||
97 | pow(($previousPoint->y() - $point->y()), 2) |
||
98 | ); |
||
99 | $length += $segmentLength; |
||
100 | $x += ($previousPoint->x() + $point->x()) / 2 * $segmentLength; |
||
101 | $y += ($previousPoint->y() + $point->y()) / 2 * $segmentLength; |
||
102 | } |
||
103 | $previousPoint = $point; |
||
104 | } |
||
105 | if ($length === 0.0) { |
||
106 | return $this->startPoint(); |
||
107 | } |
||
108 | return new Point($x / $length, $y / $length); |
||
109 | } |
||
110 | |||
111 | /** |
||
112 | * Returns the length of this Curve in its associated spatial reference. |
||
113 | * Eg. if Geometry is in geographical coordinate system it returns the length in degrees |
||
114 | * @return float|int |
||
115 | */ |
||
116 | public function length() |
||
117 | { |
||
118 | if ($this->getGeos()) { |
||
119 | // @codeCoverageIgnoreStart |
||
120 | /** @noinspection PhpUndefinedMethodInspection */ |
||
121 | return $this->getGeos()->length(); |
||
122 | // @codeCoverageIgnoreEnd |
||
123 | } |
||
124 | $length = 0.0; |
||
125 | /** @var Point $previousPoint */ |
||
126 | $previousPoint = null; |
||
127 | foreach ($this->getPoints() as $point) { |
||
128 | if ($previousPoint) { |
||
129 | $length += sqrt( |
||
130 | pow(($previousPoint->x() - $point->x()), 2) + |
||
131 | pow(($previousPoint->y() - $point->y()), 2) |
||
132 | ); |
||
133 | } |
||
134 | $previousPoint = $point; |
||
135 | } |
||
136 | return $length; |
||
137 | } |
||
138 | |||
139 | public function length3D() |
||
140 | { |
||
141 | $length = 0.0; |
||
142 | /** @var Point $previousPoint */ |
||
143 | $previousPoint = null; |
||
144 | foreach ($this->getPoints() as $point) { |
||
145 | if ($previousPoint) { |
||
146 | $length += sqrt( |
||
147 | pow(($previousPoint->x() - $point->x()), 2) + |
||
148 | pow(($previousPoint->y() - $point->y()), 2) + |
||
149 | pow(($previousPoint->z() - $point->z()), 2) |
||
150 | ); |
||
151 | } |
||
152 | $previousPoint = $point; |
||
153 | } |
||
154 | return $length; |
||
155 | } |
||
156 | |||
157 | /** |
||
158 | * @param float|null $radius Earth radius |
||
159 | * @return float Length in meters |
||
160 | */ |
||
161 | public function greatCircleLength($radius = geoPHP::EARTH_WGS84_SEMI_MAJOR_AXIS) |
||
162 | { |
||
163 | $length = 0.0; |
||
164 | $rad = M_PI / 180; |
||
165 | $points = $this->getPoints(); |
||
166 | $numPoints = $this->numPoints() - 1; |
||
167 | for ($i = 0; $i < $numPoints; ++$i) { |
||
168 | // Simplified Vincenty formula with equal major and minor axes (a sphere) |
||
169 | $lat1 = $points[$i]->y() * $rad; |
||
170 | $lat2 = $points[$i + 1]->y() * $rad; |
||
171 | $lon1 = $points[$i]->x() * $rad; |
||
172 | $lon2 = $points[$i + 1]->x() * $rad; |
||
173 | $deltaLon = $lon2 - $lon1; |
||
174 | $d = |
||
175 | $radius * |
||
176 | atan2( |
||
177 | sqrt( |
||
178 | pow(cos($lat2) * sin($deltaLon), 2) + |
||
179 | pow(cos($lat1) * sin($lat2) - sin($lat1) * cos($lat2) * cos($deltaLon), 2) |
||
180 | ), |
||
181 | sin($lat1) * sin($lat2) + |
||
182 | cos($lat1) * cos($lat2) * cos($deltaLon) |
||
183 | ); |
||
184 | if ($points[$i]->is3D()) { |
||
185 | $d = sqrt( |
||
186 | pow($d, 2) + |
||
187 | pow($points[$i + 1]->z() - $points[$i]->z(), 2) |
||
188 | ); |
||
189 | } |
||
190 | |||
191 | $length += $d; |
||
192 | } |
||
193 | // Returns length in meters. |
||
194 | return $length; |
||
195 | } |
||
196 | |||
197 | /** |
||
198 | * @return float Haversine length of geometry in degrees |
||
199 | */ |
||
200 | public function haversineLength() |
||
201 | { |
||
202 | $distance = 0.0; |
||
203 | $points = $this->getPoints(); |
||
204 | $numPoints = $this->numPoints() - 1; |
||
205 | for ($i = 0; $i < $numPoints; ++$i) { |
||
206 | $point = $points[$i]; |
||
207 | $nextPoint = $points[$i + 1]; |
||
208 | $degree = (geoPHP::EARTH_WGS84_SEMI_MAJOR_AXIS * |
||
209 | acos( |
||
210 | sin(deg2rad($point->y())) * sin(deg2rad($nextPoint->y())) + |
||
211 | cos(deg2rad($point->y())) * cos(deg2rad($nextPoint->y())) * |
||
212 | cos(deg2rad(abs($point->x() - $nextPoint->x()))) |
||
213 | ) |
||
214 | ); |
||
215 | if (!is_nan($degree)) { |
||
216 | $distance += $degree; |
||
217 | } |
||
218 | } |
||
219 | return $distance; |
||
220 | } |
||
221 | |||
222 | /** |
||
223 | * @source https://github.com/mjaschen/phpgeo/blob/master/src/Location/Distance/Vincenty.php |
||
224 | * @author Marcus Jaschen <[email protected]> |
||
225 | * @license https://opensource.org/licenses/GPL-3.0 GPL |
||
226 | * (note: geoPHP uses "GPL version 2 (or later)" license which is compatible with GPLv3) |
||
227 | * |
||
228 | * @return float Length in meters |
||
229 | */ |
||
230 | public function vincentyLength() |
||
231 | { |
||
232 | $length = 0.0; |
||
233 | $rad = M_PI / 180; |
||
234 | $points = $this->getPoints(); |
||
235 | $numPoints = $this->numPoints() - 1; |
||
236 | for ($i = 0; $i < $numPoints; ++$i) { |
||
237 | // Inverse Vincenty formula |
||
238 | $lat1 = $points[$i]->y() * $rad; |
||
239 | $lat2 = $points[$i + 1]->y() * $rad; |
||
240 | $lng1 = $points[$i]->x() * $rad; |
||
241 | $lng2 = $points[$i + 1]->x() * $rad; |
||
242 | |||
243 | $a = geoPHP::EARTH_WGS84_SEMI_MAJOR_AXIS; |
||
244 | $b = geoPHP::EARTH_WGS84_SEMI_MINOR_AXIS; |
||
245 | $f = 1 / geoPHP::EARTH_WGS84_FLATTENING; |
||
246 | $L = $lng2 - $lng1; |
||
247 | $U1 = atan((1 - $f) * tan($lat1)); |
||
248 | $U2 = atan((1 - $f) * tan($lat2)); |
||
249 | $iterationLimit = 100; |
||
250 | $lambda = $L; |
||
251 | $sinU1 = sin($U1); |
||
252 | $sinU2 = sin($U2); |
||
253 | $cosU1 = cos($U1); |
||
254 | $cosU2 = cos($U2); |
||
255 | do { |
||
256 | $sinLambda = sin($lambda); |
||
257 | $cosLambda = cos($lambda); |
||
258 | $sinSigma = sqrt( |
||
259 | ($cosU2 * $sinLambda) * |
||
260 | ($cosU2 * $sinLambda) + |
||
261 | ($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda) * |
||
262 | ($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda) |
||
263 | ); |
||
264 | if ($sinSigma == 0) { |
||
265 | return 0.0; |
||
266 | } |
||
267 | $cosSigma = $sinU1 * $sinU2 + $cosU1 * $cosU2 * $cosLambda; |
||
268 | $sigma = atan2($sinSigma, $cosSigma); |
||
269 | $sinAlpha = $cosU1 * $cosU2 * $sinLambda / $sinSigma; |
||
270 | $cosSqAlpha = 1 - $sinAlpha * $sinAlpha; |
||
271 | $cos2SigmaM = 0; |
||
272 | if ($cosSqAlpha <> 0) { |
||
273 | $cos2SigmaM = $cosSigma - 2 * $sinU1 * $sinU2 / $cosSqAlpha; |
||
274 | } |
||
275 | $C = $f / 16 * $cosSqAlpha * (4 + $f * (4 - 3 * $cosSqAlpha)); |
||
276 | $lambdaP = $lambda; |
||
277 | $lambda = $L + (1 - $C) * $f * $sinAlpha * |
||
278 | ($sigma + $C * $sinSigma * ($cos2SigmaM + $C * $cosSigma * (- 1 + 2 * $cos2SigmaM * $cos2SigmaM))); |
||
279 | } while (abs($lambda - $lambdaP) > 1e-12 && --$iterationLimit > 0); |
||
280 | if ($iterationLimit == 0) { |
||
281 | return null; // not converging |
||
282 | } |
||
283 | $uSq = $cosSqAlpha * ($a * $a - $b * $b) / ($b * $b); |
||
284 | $A = 1 + $uSq / 16384 * (4096 + $uSq * (- 768 + $uSq * (320 - 175 * $uSq))); |
||
285 | $B = $uSq / 1024 * (256 + $uSq * (- 128 + $uSq * (74 - 47 * $uSq))); |
||
286 | $deltaSigma = $B * $sinSigma * ($cos2SigmaM + $B / 4 * |
||
287 | ($cosSigma * (-1 + 2 * $cos2SigmaM * $cos2SigmaM) - $B / 6 |
||
288 | * $cos2SigmaM * (-3 + 4 * $sinSigma * $sinSigma) |
||
289 | * (-3 + 4 * $cos2SigmaM * $cos2SigmaM))); |
||
290 | |||
291 | $length += $b * $A * ($sigma - $deltaSigma); |
||
292 | } |
||
293 | // Returns length in meters. |
||
294 | return $length; |
||
295 | } |
||
296 | |||
297 | public function minimumZ() |
||
298 | { |
||
299 | $min = PHP_INT_MAX; |
||
300 | foreach ($this->getPoints() as $point) { |
||
301 | if ($point->hasZ() && $point->z() < $min) { |
||
302 | $min = $point->z(); |
||
303 | } |
||
304 | } |
||
305 | return $min < PHP_INT_MAX ? $min : null; |
||
306 | } |
||
307 | |||
308 | public function maximumZ() |
||
309 | { |
||
310 | $max = ~PHP_INT_MAX; |
||
311 | foreach ($this->getPoints() as $point) { |
||
312 | if ($point->hasZ() && $point->z() > $max) { |
||
313 | $max = $point->z(); |
||
314 | } |
||
315 | } |
||
316 | |||
317 | return $max > ~PHP_INT_MAX ? $max : null; |
||
318 | } |
||
319 | |||
320 | public function zDifference() |
||
321 | { |
||
322 | if ($this->startPoint()->hasZ() && $this->endPoint()->hasZ()) { |
||
323 | return abs($this->startPoint()->z() - $this->endPoint()->z()); |
||
324 | } else { |
||
325 | return null; |
||
326 | } |
||
327 | } |
||
328 | |||
329 | /** |
||
330 | * Returns the cumulative elevation gain of the LineString |
||
331 | * |
||
332 | * @param int|float|null $verticalTolerance Smoothing factor filtering noisy elevation data. |
||
333 | * Its unit equals to the z-coordinates unit (meters for geographical coordinates) |
||
334 | * If the elevation data comes from a DEM, a value around 3.5 can be acceptable. |
||
335 | * |
||
336 | * @return float |
||
337 | */ |
||
338 | public function elevationGain($verticalTolerance = 0) |
||
352 | } |
||
353 | |||
354 | /** |
||
355 | * Returns the cumulative elevation loss of the LineString |
||
356 | * |
||
357 | * @param int|float|null $verticalTolerance Smoothing factor filtering noisy elevation data. |
||
358 | * Its unit equals to the z-coordinates unit (meters for geographical coordinates) |
||
359 | * If the elevation data comes from a DEM, a value around 3.5 can be acceptable. |
||
360 | * |
||
361 | * @return float |
||
362 | */ |
||
363 | public function elevationLoss($verticalTolerance = 0) |
||
364 | { |
||
365 | $loss = 0.0; |
||
366 | $lastEle = $this->startPoint()->z(); |
||
367 | $pointCount = $this->numPoints(); |
||
368 | foreach ($this->getPoints() as $i => $point) { |
||
369 | if (abs($point->z() - $lastEle) > $verticalTolerance || $i === $pointCount - 1) { |
||
370 | if ($point->z() < $lastEle) { |
||
371 | $loss += $lastEle - $point->z(); |
||
372 | } |
||
373 | $lastEle = $point->z(); |
||
374 | } |
||
375 | } |
||
376 | return $loss; |
||
377 | } |
||
378 | |||
379 | public function minimumM() |
||
380 | { |
||
381 | $min = PHP_INT_MAX; |
||
382 | foreach ($this->getPoints() as $point) { |
||
383 | if ($point->isMeasured() && $point->m() < $min) { |
||
384 | $min = $point->m(); |
||
385 | } |
||
386 | } |
||
387 | return $min < PHP_INT_MAX ? $min : null; |
||
388 | } |
||
389 | |||
390 | public function maximumM() |
||
400 | } |
||
401 | |||
402 | /** |
||
403 | * Get all line segments |
||
404 | * @param bool $toArray return segments as LineString or array of start and end points |
||
405 | * |
||
406 | * @return LineString[]|array[Point] |
||
407 | */ |
||
408 | public function explode($toArray = false) |
||
421 | } |
||
422 | |||
423 | /** |
||
424 | * Checks that LineString is a Simple Geometry |
||
425 | * |
||
426 | * @return boolean |
||
427 | */ |
||
428 | public function isSimple() |
||
429 | { |
||
430 | if ($this->getGeos()) { |
||
431 | // @codeCoverageIgnoreStart |
||
432 | /** @noinspection PhpUndefinedMethodInspection */ |
||
433 | return $this->getGeos()->isSimple(); |
||
434 | // @codeCoverageIgnoreEnd |
||
435 | } |
||
436 | |||
437 | // As of OGR specification a ring is simple only if its start and end points equals in all coordinates |
||
438 | // Neither GEOS, nor PostGIS support it |
||
439 | // if ($this->hasZ() |
||
440 | // && $this->startPoint()->equals($this->endPoint()) |
||
441 | // && $this->startPoint()->z() !== $this->endPoint()->z() |
||
442 | // ) { |
||
443 | // return false; |
||
444 | // } |
||
445 | |||
446 | $segments = $this->explode(true); |
||
447 | foreach ($segments as $i => $segment) { |
||
448 | foreach ($segments as $j => $checkSegment) { |
||
449 | if ($i != $j) { |
||
450 | if (Geometry::segmentIntersects($segment[0], $segment[1], $checkSegment[0], $checkSegment[1])) { |
||
451 | return false; |
||
452 | } |
||
453 | } |
||
454 | } |
||
455 | } |
||
456 | return true; |
||
457 | } |
||
458 | |||
459 | /** |
||
460 | * @param LineString $segment |
||
461 | * @return bool |
||
462 | */ |
||
463 | public function lineSegmentIntersect($segment) |
||
464 | { |
||
465 | return Geometry::segmentIntersects( |
||
466 | $this->startPoint(), |
||
467 | $this->endPoint(), |
||
468 | $segment->startPoint(), |
||
469 | $segment->endPoint() |
||
470 | ); |
||
471 | } |
||
472 | |||
473 | /** |
||
474 | * @param Geometry|Collection $geometry |
||
475 | * @return float|null |
||
476 | */ |
||
477 | public function distance($geometry) |
||
519 | } |
||
520 | } |
||
521 | } |
||
522 |
The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g.
excluded_paths: ["lib/*"]
, you can move it to the dependency path list as follows:For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths