Total Complexity | 57 |
Total Lines | 630 |
Duplicated Lines | 40 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like build.rna_tools.tools.mq.rna_mq_collect_tqdm often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | #!/usr/bin/env python |
||
2 | # -*- coding: utf-8 -*- |
||
3 | """mqaprna.py - a script for running all wrapers on each PDB file in a specified directory |
||
4 | saves results to a CSV file. |
||
5 | |||
6 | ss_agreement is ... |
||
7 | |||
8 | The code is full of # hack and tricks. |
||
9 | |||
10 | .. warning:: Uses global variables |
||
11 | |||
12 | Install: |
||
13 | |||
14 | csvsort |
||
15 | |||
16 | Cmd:: |
||
17 | |||
18 | # find . -iname 'FARFAR2*.csv' -exec cat {} + > FARFAR2_hires.csv |
||
19 | $ rna_mq_collect.py -t FARFAR2_hires -m 4 -f -o FARFAR2_hires.csv -l all.txt x.pdb |
||
20 | # fake x.pdb when -l is used, -l gets a list of files |
||
21 | x.pdb |
||
22 | y.pdb |
||
23 | z.pdb |
||
24 | |||
25 | 88% (49329 of 55689) |############### | Elapsed Time: 0:45:23 ETA: 2 days, 18:42:16 |
||
26 | |||
27 | """ |
||
28 | MP_VERBOSE = False |
||
29 | DEBUG_MODE = False |
||
30 | |||
31 | ################################################################################ |
||
32 | import sys |
||
33 | #sys.path.insert(0, "/Users/magnus/work/src/rna-tools/rna_tools/tools/mq/") # ugly! |
||
34 | import progressbar |
||
35 | # import mqaprna_score as mqs |
||
36 | import time |
||
37 | import os |
||
38 | import copy |
||
39 | from csvsort import csvsort |
||
40 | |||
41 | import rna_tools.tools.mq.lib.shellgraphics.shellgraphics as sg |
||
42 | sg.color_mode = False |
||
43 | from rna_tools.tools.mq.lib.timex import timex |
||
44 | #import rna_tools.tools.mq.mqaprna_config as Config |
||
45 | import rna_tools.rna_tools_config as Config |
||
46 | ################################################################################ |
||
47 | |||
48 | import rna_tools |
||
49 | __version__ = rna_tools.__version__ |
||
50 | |||
51 | import os |
||
52 | import sys |
||
53 | DIRNAME = os.path.dirname(__file__) |
||
54 | PARENT_DIRNAME = os.path.abspath(os.path.join(DIRNAME, os.path.pardir)) |
||
55 | sys.path.append(DIRNAME) |
||
56 | sys.path.append(PARENT_DIRNAME) |
||
57 | import csv |
||
58 | import imp |
||
59 | |||
60 | from optparse import OptionParser, OptionGroup |
||
61 | from ctypes import c_int |
||
62 | |||
63 | from icecream import ic |
||
64 | import sys |
||
65 | ic.configureOutput(outputFunction=lambda *a: print(*a, file=sys.stderr)) |
||
66 | ic.configureOutput(prefix='> ') |
||
67 | |||
68 | |||
69 | #import lib.rmsd_calc.rmsd_calc as rmsd_calc |
||
70 | from multiprocessing import Pool, Lock, Value |
||
71 | |||
72 | try: |
||
73 | from wrappers.mqap_score.mqap_score import MqapScore |
||
74 | except ImportError: |
||
75 | pass |
||
76 | |||
77 | # super-verbose logging |
||
78 | MP_VERBOSE = 0 |
||
79 | if MP_VERBOSE: |
||
80 | import multiprocessing |
||
81 | logger = multiprocessing.log_to_stderr() |
||
82 | logger.setLevel(multiprocessing.SUBDEBUG) |
||
83 | |||
84 | # create wrappers for all the methods |
||
85 | MODULES = {} |
||
86 | for m in Config.METHOD_LIST: |
||
87 | if m.find('_') > -1: |
||
88 | m,n = m.split('_') |
||
89 | wrapper_path = os.path.join(Config.WRAPPERS_PATH, m, m + '.py') |
||
90 | module = imp.load_source(m, wrapper_path) |
||
91 | MODULES[m] = module |
||
92 | |||
93 | # global variable |
||
94 | c = 0 |
||
95 | methods = Config.METHOD_LIST |
||
96 | cleanup = True |
||
97 | |||
98 | counter = Value(c_int) |
||
99 | counter_lock = Lock() |
||
100 | |||
101 | # ['farna_rna_base_axis', 'farna_rna_backbone_backbone', 'farna_rna_base_stack_axis', 'farna_rna_base_stagger', 'farna_rna_base_stack', 'farna_rna_base_pair', 'farna_rna_repulsive', 'farna_rna_vdw', 'farna_rna_base_backbone', 'farna_score_lowres', 'farna_rna_data_backbone', 'farna_linear_chainbreak', 'farna_rna_rg', 'farna_atom_pair_constraint'], |
||
102 | |||
103 | steps = '0' # |
||
104 | attributes = { |
||
105 | 'QRNA' : [ 'qrna_' + steps + '_electro', 'qrna_' + steps ], |
||
106 | #'RASP' : [ 'rasp_all_pdb_energy', 'rasp_all_no_contacts', 'rasp_all_norm_energy', 'rasp_all_mean_energy', 'rasp_all_sd_energy', 'rasp_all_zscore'] |
||
107 | 'RASP' : ['rasp_c3_pdb_energy', 'rasp_c3_no_contacts', 'rasp_c3_norm_energy', 'rasp_c3_mean_energy', 'rasp_c3_sd_energy', 'rasp_c3_zscore', 'rasp_bb_pdb_energy', 'rasp_bb_no_contacts', 'rasp_bb_norm_energy', 'rasp_bb_mean_energy', 'rasp_bb_sd_energy', 'rasp_bb_zscore', 'rasp_bbr_pdb_energy', 'rasp_bbr_no_contacts', 'rasp_bbr_norm_energy', 'rasp_bbr_mean_energy', 'rasp_bbr_sd_energy', 'rasp_bbr_zscore', 'rasp_all_pdb_energy', 'rasp_all_no_contacts', 'rasp_all_norm_energy', 'rasp_all_mean_energy', 'rasp_all_sd_energy', 'rasp_all_zscore'], |
||
108 | 'FARNA_hires' : ['farna_score_hires', 'farna_fa_atr', 'farna_fa_rep', 'farna_fa_intra_rep', |
||
109 | 'farna_lk_nonpolar', |
||
110 | 'farna_fa_elec_rna_phos_phos', |
||
111 | 'farna_ch_bond', |
||
112 | 'farna_rna_torsion', |
||
113 | 'farna_rna_sugar_close', |
||
114 | 'farna_hbond_sr_bb_sc', |
||
115 | 'farna_hbond_lr_bb_sc', |
||
116 | 'farna_hbond_sc', |
||
117 | 'farna_geom_sol', |
||
118 | 'farna_atom_pair_constraint_hires', |
||
119 | 'farna_linear_chainbreak_hires'], |
||
120 | |||
121 | 'SimRNA_0' : ['simrna_steps', 'simrna_total_energy', 'simrna_base_base', 'simrna_short_stacking', 'simrna_base_backbone', 'simrna_local_geometry', 'simrna_bonds_dist_cp', 'simrna_bonds_dist_pc', 'simrna_flat_angles_cpc', 'simrna_flat_angles_pcp', 'simrna_tors_eta_theta', 'simrna_sphere_penalty', 'simrna_chain_energy'], |
||
122 | 'RNAkb' : ['rnakb_bond', 'rnakb_angle', 'rnakb_proper_dih', 'rnakb_improper_dih', 'rnakb_lj14', 'rnakb_coulomb14', 'rnakb_lj_sr', 'rnakb_coulomb_sr', |
||
123 | 'rnakb_potential', 'rnakb_kinetic_en', 'rnakb_total_energy'], |
||
124 | 'RNAkb_all' : ['rnakb_bond_all', 'rnakb_angle_all', 'rnakb_proper_dih_all', 'rnakb_improper_dih_all', 'rnakb_lj14_all', 'rnakb_coulomb14_all', 'rnakb_lj_sr_all', 'rnakb_coulomb_sr_all', |
||
125 | 'rnakb_potential_all', 'rnakb_kinetic_en_all', 'rnakb_total_energy_all'], |
||
126 | |||
127 | 'RNAscore' : ['x3rnascore'], |
||
128 | 'AnalyzeGeometry' : ['analyze_geometry'], |
||
129 | 'SSAgreement' : ['ss_disagreement'], |
||
130 | 'ClashScore' : ['clash_score'], |
||
131 | 'Ernwin_1' : [ 'ernwin_1' ], |
||
132 | 'Ernwin_1k' : [ 'ernwin_1k' ], |
||
133 | 'eSCORE' : ['escore'], |
||
134 | 'RNA3DCNN' : ['rna3dcnn'], |
||
135 | 'Dfire' : ['dfire'], |
||
136 | |||
137 | 'FARNA': ['farna_score_lowres', |
||
138 | 'farna_rna_data_backbone', |
||
139 | 'farna_rna_vdw', |
||
140 | 'farna_rna_base_backbone', |
||
141 | 'farna_rna_backbone_backbone', |
||
142 | 'farna_rna_repulsive', |
||
143 | 'farna_rna_base_pair', |
||
144 | 'farna_rna_base_axis', |
||
145 | 'farna_rna_base_stagger', |
||
146 | 'farna_rna_base_stack', |
||
147 | 'farna_rna_base_stack_axis', |
||
148 | 'farna_rna_rg', |
||
149 | 'farna_atom_pair_constraint', |
||
150 | 'farna_linear_chainbreak'], |
||
151 | |||
152 | 'FARFAR2_hires': 'ff2_score_hires,ff2_fa_atr,ff2_fa_rep,ff2_fa_intra_rep,ff2_lk_nonpolar,ff2_fa_elec_rna_phos_phos,ff2_rna_torsion,ff2_suiteness_bonus,ff2_rna_sugar_close,ff2_fa_stack,ff2_stack_elec,ff2_geom_sol_fast,ff2_bond_sr_bb_sc,ff2_hbond_lr_bb_sc,ff2_hbond_sc,ff2_ref,ff2_free_suite,ff2_free_2HOprime,ff2_intermol,ff2_other_pose,ff2_loop_close,ff2_linear_chainbreak_hires'.split(','), |
||
153 | |||
154 | #'SimRNA_0' : ['', 'simrna', '', '', '', '', '', '', '', '', '', '', ''], |
||
155 | 'rmsd_all': ['rmsd_all'], |
||
156 | } |
||
157 | |||
158 | |||
159 | View Code Duplication | def single_run(lst): |
|
|
|||
160 | """Start a mqaprna run for a given file |
||
161 | with all methods (according to config file). |
||
162 | |||
163 | [!] Use global cleanup = False to block cleaning up |
||
164 | |||
165 | .. warning:: The function uses global variable. |
||
166 | """ |
||
167 | filename, c, verbose, methods, opt, ref_seq = lst |
||
168 | all_results = {} |
||
169 | |||
170 | for m in methods: |
||
171 | |||
172 | arguments = '' |
||
173 | #if DEBUG_MODE: print 'method', m, arguments |
||
174 | mfull = m |
||
175 | |||
176 | if verbose: print(m + '...') # show method 'eSCORE...' |
||
177 | |||
178 | if m == 'FARNA': |
||
179 | mfull = m |
||
180 | arguments = [filename] + [False] |
||
181 | |||
182 | if m == 'FARNA_hires': |
||
183 | m = 'FARNA' |
||
184 | mfull = 'FARNA_hires' |
||
185 | arguments = [filename] + [True] |
||
186 | |||
187 | if m == 'FARFAR2': |
||
188 | m = 'FARFAR2' |
||
189 | mfull = 'FARFAR2' |
||
190 | arguments = [filename] + [False] |
||
191 | |||
192 | if m == 'FARFAR2_hires': |
||
193 | m = 'FARFAR2' |
||
194 | mfull = 'FARFAR2_hires' |
||
195 | arguments = [filename] + [True] |
||
196 | |||
197 | if m == 'RNAkb_all': |
||
198 | m = 'RNAkb' |
||
199 | mfull = 'RNAkb_all' |
||
200 | arguments = [filename] + ['aa'] |
||
201 | |||
202 | if m.find('_') > -1: |
||
203 | m, n = m.split('_') |
||
204 | n = n.replace('n', '') # n_XXX |
||
205 | n = n.replace('k', '000') |
||
206 | n = n.replace('m', '000000') |
||
207 | arguments = [filename] + [n] |
||
208 | |||
209 | if not arguments: |
||
210 | arguments = [filename] + Config.WRAPPER_OPTIONS[m] |
||
211 | |||
212 | if m == 'escore': |
||
213 | m = 'eSCORE' |
||
214 | wrapper = getattr(MODULES[m], m)()#verbose) # ref_seq, ref_ss, verbose) # for all wrappers but SSAgrement '','' is OK |
||
215 | |||
216 | if m == 'NAST_pyro': |
||
217 | lock.acquire() |
||
218 | |||
219 | if DEBUG_MODE: |
||
220 | result = wrapper.run(*arguments) |
||
221 | if verbose: print(m, result) # ClashScore 12.256669 |
||
222 | all_results[mfull] = result |
||
223 | if cleanup: wrapper.cleanup() |
||
224 | else: |
||
225 | try: |
||
226 | result = wrapper.run(*arguments) |
||
227 | all_results[mfull] = result |
||
228 | if cleanup: wrapper.cleanup() |
||
229 | except: |
||
230 | all_results[mfull] = 'error' |
||
231 | if cleanup: wrapper.cleanup() |
||
232 | |||
233 | # {'ClashScore': 12.256669} |
||
234 | # {'ClashScore': 12.256669, 'AnalyzeGeometry': 32.5581} |
||
235 | # {'ClashScore': 12.256669, 'AnalyzeGeometry': 32.5581, 'FARNA': '-20.008,-2.739,-13.175,-77.67,-10.652,-158.51,9.547,8.39,-16.246,-263.281,0.0,0.0,17.782,0.0'} |
||
236 | #if verbose: print 'all_results:', all_results # this every each method showed |
||
237 | |||
238 | if m == 'NAST_pyro': |
||
239 | lock.release() |
||
240 | |||
241 | # get rmsd |
||
242 | if opt.native_pdb_filename: |
||
243 | rmsd = rmsd_calc.get_rmsd(opt.native_pdb_filename, |
||
244 | filename) |
||
245 | all_results['rmsd'] = rmsd |
||
246 | methods = methods + ['rmsd'] |
||
247 | else: |
||
248 | methods = methods |
||
249 | |||
250 | # length |
||
251 | length = len(ref_seq) |
||
252 | all_results['length'] = length |
||
253 | |||
254 | if opt.mqapscore: |
||
255 | # meta-score |
||
256 | ms = MqapScore(all_results) |
||
257 | mqap_score = ms.get_score() |
||
258 | methods = methods + ['SCORE'] |
||
259 | all_results['SCORE'] = mqap_score |
||
260 | |||
261 | if True: |
||
262 | # lock.acquire() |
||
263 | |||
264 | global counter_lock |
||
265 | #with counter_lock: |
||
266 | counter.value += 1 |
||
267 | |||
268 | if counter.value != 1: |
||
269 | # @todo does not work |
||
270 | #sys.stdout.write('\033[F') |
||
271 | #sys.stdout.write('\033[F') |
||
272 | pass |
||
273 | |||
274 | #results = [str(round(all_results[mfull],2)).strip().rjust(9) for m in methods] |
||
275 | |||
276 | results_str = str(all_results) # "{'AnalyzeGeometry': 0.0, 'eSCORE': 0.10661, 'FARNA': ['-2.411', '0.0', '0.0', '-9.672', '0.0', '-25.678', '0.0', '1.061', '0.0', '-32.098', '0.0', '0.0', '4.601', '0.0'], 'ClashScore': 36.458333, 'length': 0, 'SimRNA_0': ['0', '67.345305', '-37.428', '-23.073', '0.248', '104.524975', '87.955', '9.938', '5.669', '1.089', '-0.126', '', '67.345305'], 'FARNA_hires': ['0.0', '-13.107', '-0.711', '0.0', '5.22', '2.734', '-30.044', '0.223', '-10.511', '-0.173', '-4.719', '1.143', '0.0', '14.371', '9.358'], 'RNAscore': 8.11007, 'RASP': ['-0.1382', '15', '-0.00921333', '-0.0845115', '0.454033', '-0.118248', '-277.666', '949', '-0.292588', '-273.37', '2.51163', '-1.71042', '-584.451', '2144', '-0.272598', '-564.143', '5.77609', '-3.51588', '-1616.08', '6700', '-0.241206', '0', '0', '0'], 'RNAkb': -1}" |
||
277 | |||
278 | results = [all_results[mfull] for m in methods] |
||
279 | # progress bar |
||
280 | #sys.stdout.write('\r') |
||
281 | #sys.stdout.flush() |
||
282 | #sys.stdout.write('\r' + ' ' * 110 + '\r' + filename.split(os.sep)[-1].ljust(50) + ' ' + ' '.join(results)) |
||
283 | |||
284 | ########### line with resluts ###################### |
||
285 | #bar.update(counter.value) |
||
286 | ## my old progress bar here: |
||
287 | # print(sg.pprogress_line(counter.value, filename_length, ''))# , |
||
288 | ## print results, use --verbose now |
||
289 | if verbose: |
||
290 | print(filename.split(os.sep)[-1].ljust(20) + ' ' + results_str) |
||
291 | |||
292 | ## [ ] 1 7.14 % 14 3_solution_1.pdb {'AnalyzeGeometry': 0.0, 'eSCORE': 1.70264, 'FARNA': ['-31.498', '-11.589', '-32.7', '-123.708', '-25.514', '-271.337', '33.563', '2.957', '-36.699', '-471.864', '0.0', '0.0', '24.659', '0.0'], 'ClashScore': 2.201835, 'length': 0, 'SimRNA_0': ['0', '-1016.539381', '-599.475', '-223.162', '-3.935', '-413.129576', '-65.066', '-71.505', '-68.947', '-45.989', '-161.622', '', '-1016.539381'], 'FARNA_hires': ['0.0', '-541.374', '-0.59', '0.0', '1.85', '8.12', '-433.113', '17.811', '-229.203', '3.074', '-140.106', '13.875', '-17.245', '226.762', '7.39'], 'RNAscore': 26.7066, 'RASP': ['-9.3599', '987', '-0.00948318', '8.16333', '3.95157', '-4.4345', '-7976.88', '60547', '-0.131747', '-7274.73', '52.7448', '-13.3123', '-17537.5', '138719', '-0.126424', '-15578.4', '106.602', '-18.3777', '-34270.8', '483436', '-0.07089', '0', '0', '0'], 'RNAkb': -0.019507621989000006} |
||
293 | |||
294 | #sys.stdout.flush() |
||
295 | |||
296 | #sys.stdout.write(sg.pprogress_line(counter.value, filename_length)) |
||
297 | #print sg.pprogress_line(counter.value, filename_length) |
||
298 | #sys.stdout.flush() |
||
299 | |||
300 | ## for graphics debugging |
||
301 | #import time |
||
302 | #time.sleep(1) |
||
303 | |||
304 | #format_line([filename.split(os.sep)[-1] + [all_results[m] for m in methods]]) # @todo Nice print with ShellGraphics |
||
305 | cells = [c, filename.split(os.sep)[-1]] # add id |
||
306 | for m in methods: |
||
307 | if type(all_results[m]) == list: |
||
308 | cells.extend(all_results[m]) |
||
309 | else: |
||
310 | cells.append(all_results[m]) |
||
311 | #csv_writer.writerow(cells) |
||
312 | return cells |
||
313 | #print 'mqaprna::filename: %i %s' % (counter.value, filename) |
||
314 | #csv_file.flush() |
||
315 | #lock.release() |
||
316 | |||
317 | # hack |
||
318 | try: |
||
319 | methods.remove('SCORE') |
||
320 | except ValueError: |
||
321 | pass |
||
322 | |||
323 | try: |
||
324 | methods.remove('rmsd') |
||
325 | except ValueError: |
||
326 | pass |
||
327 | |||
328 | |||
329 | View Code Duplication | def option_parser(): |
|
330 | """Get options or show usage msg. |
||
331 | """ |
||
332 | description = '' |
||
333 | version = __version__ |
||
334 | usage = '\t%prog [-m <number_processes>] [-n <native_pdb_filename>] [-s <seq_ss_filename>] [-g <ignore_pdb_filename>] \ \n\t -o <output csv> <dir/*> # [!] no .csv! the file will get version of mqaprna \n\t' + __version__ |
||
335 | parser = OptionParser(description=__doc__, |
||
336 | version=version, |
||
337 | usage=usage) |
||
338 | |||
339 | parser.add_option("-q", "--mQapscore", |
||
340 | action="store_true", default=False, dest="mqapscore", help="calculate mqapscore") |
||
341 | |||
342 | parser.add_option("-v", "--verbose", |
||
343 | action="store_true", default=False, dest="verbose", help="verbose") |
||
344 | |||
345 | parser.add_option("-f", "--no-filename-version", |
||
346 | action="store_true", default=False, dest="no_filename_version", help="don't add version of tool to csv filename") |
||
347 | |||
348 | |||
349 | parser.add_option("-n", "--native_pdb_filename", |
||
350 | action="store", type="string", dest="native_pdb_filename", help="native structure in PDB format to calculate RMSD") |
||
351 | |||
352 | parser.add_option("-m", "--multiprocessing", |
||
353 | action="store", type="int", dest="number_processes", default=1, |
||
354 | help="set a number of processes, default=8, 0 is no multiprocessing") |
||
355 | |||
356 | group2 = OptionGroup(parser, "Ignore pdbs, don't have empty lines here! Example", |
||
357 | """1xjrA_output3-000142_AA.pdb |
||
358 | 1xjrA_output3-000208_AA.pdb |
||
359 | 1xjrA_output3-000166_AA.pdb""") |
||
360 | |||
361 | group2.add_option("-g", "--ignore-pdbs", |
||
362 | action="store", type="string", dest="ignore_pdb_filename") |
||
363 | |||
364 | group = OptionGroup(parser, "Seq-SS. Example", |
||
365 | """>1xjrA |
||
366 | GAGUUCACCGAGGCCACGCGGAGUACGAUCGAGGGUACAGUGAAUU |
||
367 | .(((((((...((((.((((.....))..))..))).).)))))))""") |
||
368 | |||
369 | group.add_option("-t", "--methods", |
||
370 | action="store", type="string", dest="methods", help=', '.join(['RASP', 'SimRNA', 'AnalyzeGeometry','FARNA', 'QRNA', 'NAST_pyro', |
||
371 | 'radius_of_gyration', 'SSAgreement', 'ClashScore', 'RNAkb', |
||
372 | 'RNAkb_all', 'FARNA_hires', 'FARNA', 'FARFAR2', |
||
373 | 'FARFAR2_hires', 'Dfire', 'RNA3DCNN', 'eSCORE'])) |
||
374 | |||
375 | group.add_option("-s", "--seq-ss", |
||
376 | action="store", type="string", dest="seq_ss_filename", help="") |
||
377 | |||
378 | group.add_option("-o", "--output", |
||
379 | action="store", type="string", dest="output", help="output csv file") |
||
380 | |||
381 | group.add_option("-l", "--list-of-files", |
||
382 | action="store", type="string", dest="list_of_files", help="list of files") |
||
383 | |||
384 | |||
385 | parser.add_option_group(group) |
||
386 | parser.add_option_group(group2) |
||
387 | |||
388 | (opt, arguments) = parser.parse_args() |
||
389 | |||
390 | arguments = [f for f in arguments if f.endswith('.pdb')] |
||
391 | |||
392 | if len(arguments) == 0: |
||
393 | parser.print_help() |
||
394 | print('\n Curr methods: ', ','.join(methods), end=' ') |
||
395 | sys.exit(1) |
||
396 | |||
397 | return arguments, opt |
||
398 | |||
399 | |||
400 | class RunAllDirectory(): |
||
401 | """Class for running wrappers for all files in a directory |
||
402 | """ |
||
403 | def __init__(self): |
||
404 | pass |
||
405 | |||
406 | def run(self, filenames, csv_path, opt): |
||
407 | """Open csv (with appropriate headers), run methods, print & save csv |
||
408 | |||
409 | There are two modes of execution: |
||
410 | * multiprocessing |
||
411 | * single |
||
412 | |||
413 | .. warning:: Works on global variables: ref_seq, ref_ss, methods, lock, c |
||
414 | """ |
||
415 | global ref_seq, ref_ss, verbose, methods, lock, c |
||
416 | |||
417 | View Code Duplication | if opt.seq_ss_filename: |
|
418 | pdb_id, ref_seq, ref_ss = [x.strip() for x in open(opt.seq_ss_filename).read().strip().split('\n')] |
||
419 | #sg.phr_text('FASTA SEQ/SS') |
||
420 | sg.poptions({'AnalyzeGeometry': True, 'SSAgreement' : True}) |
||
421 | sg.poption('pdb_id', pdb_id) |
||
422 | sg.poption('ref_seq', ref_seq) |
||
423 | sg.poption('ref_ss', ref_ss) |
||
424 | else: |
||
425 | pdb_id, ref_seq, ref_ss = ['', '', ''] |
||
426 | sg.poptions({'SSAgreement' : True}) |
||
427 | # hack |
||
428 | try: # if it's not on the list |
||
429 | methods.remove('SSAgreement') |
||
430 | except ValueError: |
||
431 | pass |
||
432 | |||
433 | verbose = opt.verbose |
||
434 | |||
435 | global csv_file, csv_writer # hack |
||
436 | # csv open & add header |
||
437 | csv_file = open(csv_path, 'a') |
||
438 | csv_writer = csv.writer(csv_file, delimiter=',') |
||
439 | # make header |
||
440 | headers = ['id', 'fn'] |
||
441 | for m in methods: |
||
442 | headers += attributes[m] |
||
443 | |||
444 | if opt.native_pdb_filename: |
||
445 | headers += ['RMSDALL'] |
||
446 | if opt.mqapscore: |
||
447 | headers += ['SCORE'] |
||
448 | csv_writer.writerow(headers) |
||
449 | csv_file.flush() |
||
450 | |||
451 | # remove ~ and remove .out |
||
452 | for f in copy.copy(filenames): |
||
453 | if f.endswith('~'): |
||
454 | filenames.remove(f) |
||
455 | if f.endswith('.out'): |
||
456 | filenames.remove(f) |
||
457 | if f.find('._')>-1: |
||
458 | filenames.remove(f) |
||
459 | |||
460 | files_to_ignore = [] |
||
461 | # or if not provided |
||
462 | import glob |
||
463 | opt.ignore_pdb_filename = glob.glob('*' + opt.methods + '*.csv') |
||
464 | for f in opt.ignore_pdb_filename: # do it for the list, that's nice! |
||
465 | fn = open(f) |
||
466 | for f in fn.read().strip().split('\n'): |
||
467 | if 'error' in f: |
||
468 | continue # don't add files with errors, so the program will be re-run for them |
||
469 | # if there is an error, this will give error again quickly |
||
470 | # but this solves when you kill the job, you get erros, but it's not rally errors |
||
471 | # but stopped jobs |
||
472 | if f.find('\t') > -1: |
||
473 | f = f.split('\t')[1] # id, fn |
||
474 | if f.find(',') > -1: |
||
475 | f = f.split(',')[1] # id, fn |
||
476 | files_to_ignore.append(os.path.basename(f)) |
||
477 | |||
478 | ## files to ignore |
||
479 | print(' to ignore', len(files_to_ignore), files_to_ignore[:4]) |
||
480 | |||
481 | filenames = [] |
||
482 | for i, f in enumerate(input_files): |
||
483 | # print(i, f) |
||
484 | if '/_' in f: # skip |
||
485 | continue |
||
486 | if os.path.basename(f) not in files_to_ignore: |
||
487 | filenames.append(f) |
||
488 | |||
489 | with open('_mq_to_run_.txt', 'w') as f: |
||
490 | f.write('\n'.join(filenames)) |
||
491 | print(' save filenames to run to _mq_to_run_.txt') |
||
492 | |||
493 | ## for fi in files_to_ignore: |
||
494 | ## for fn in copy.copy(filenames): |
||
495 | ## if os.path.basename(fn).startswith('._'): |
||
496 | ## filenames.remove(fn) |
||
497 | ## if os.path.basename(fn).startswith(fi.split('\t')[0]): # # hack, @todo <- re could be used here! to ignore ['fn,RASP,SimRNA,FARNA,NAST_pyro\r', '1ykv_1_ba_c.pdb,-0.104705,-504.468933,-306.245,122.7\r', '2esj_1_ba_c.pdb,-0.1522,-1,-266.217,46.7\r', '2quw_1_ba_c.pdb,-0.103789,-729.386726,-419.047,984.0\r |
||
498 | ## filenames.remove(fn) |
||
499 | print(' files to analyze: %s' % len(filenames), filenames[:5]) |
||
500 | ## headers |
||
501 | methods_to_print = copy.copy(methods) |
||
502 | if opt.native_pdb_filename: |
||
503 | methods_to_print += ['RMSDALL'] |
||
504 | if opt.mqapscore: |
||
505 | methods_to_print += ['SCORE'] |
||
506 | |||
507 | ## if verbose: print ''.ljust(80), ''.join([m[:9].ljust(10) for m in methods_to_print]) ## print headers |
||
508 | |||
509 | sg.phr() |
||
510 | |||
511 | lock = Lock() |
||
512 | |||
513 | counter.value = len(files_to_ignore) |
||
514 | |||
515 | flist = [] |
||
516 | c = 1 |
||
517 | # two running modes |
||
518 | global filename_length |
||
519 | filenames_length = len(filenames) + len(files_to_ignore) |
||
520 | |||
521 | global bar |
||
522 | bar = progressbar.ProgressBar(max_value=filenames_length) |
||
523 | bar.update(len(files_to_ignore)) |
||
524 | |||
525 | fl = [] |
||
526 | for f in filenames: |
||
527 | fl.append([f,filenames_length]) |
||
528 | |||
529 | lst = [] |
||
530 | for f in fl: |
||
531 | # ['test/1xjrA_M1.pdb', 1, True, ['RASP']] |
||
532 | lst.append([f[0], f[1], verbose, methods, opt, ref_seq]) |
||
533 | |||
534 | if int(opt.number_processes) > 1: |
||
535 | pool = Pool(opt.number_processes) |
||
536 | from tqdm.contrib.concurrent import process_map |
||
537 | #pool.map(single_run, lst) |
||
538 | outputs = process_map(single_run, lst, max_workers=2) |
||
539 | pool.close() |
||
540 | |||
541 | for cells in outputs: |
||
542 | csv_writer.writerow(cells) |
||
543 | else: |
||
544 | for l in lst: |
||
545 | single_run(l) |
||
546 | |||
547 | #main |
||
548 | if __name__ == '__main__': |
||
549 | from icecream import ic |
||
550 | import sys |
||
551 | ic.configureOutput(outputFunction=lambda *a: print(*a, file=sys.stderr)) |
||
552 | ic.configureOutput(prefix='> ') |
||
553 | |||
554 | t = timex.Timex() |
||
555 | t.start() |
||
556 | |||
557 | arguments, opt = option_parser() |
||
558 | |||
559 | # files |
||
560 | input_files = arguments[:] |
||
561 | if opt.list_of_files: |
||
562 | for l in open(opt.list_of_files): |
||
563 | input_files.append(l.strip()) |
||
564 | #ic(input_files) |
||
565 | |||
566 | if not opt.methods: |
||
567 | opt.methods = ','.join(Config.METHOD_LIST) |
||
568 | |||
569 | if opt.no_filename_version: |
||
570 | output_csv = opt.output |
||
571 | else: |
||
572 | import platform |
||
573 | platform = platform.node() |
||
574 | if opt.output: |
||
575 | output_csv = opt.output.replace('.csv','') + '-' + __version__ + '-' + platform + '.csv' |
||
576 | else: |
||
577 | output_csv = opt.methods + '-' + __version__ + '-' + platform + '.csv' |
||
578 | |||
579 | sg.pbanner_simply(os.path.basename(sys.argv[0])) |
||
580 | |||
581 | try: |
||
582 | rnakb_option = Config.WRAPPER_OPTIONS['RNAkb'][0] |
||
583 | except KeyError: |
||
584 | rnakb_option = None |
||
585 | try: |
||
586 | rasp_option = Config.WRAPPER_OPTIONS['RASP'][0] |
||
587 | except KeyError: |
||
588 | rasp_option = None |
||
589 | |||
590 | if opt.methods: |
||
591 | methods = [x.strip() for x in opt.methods.split(',')] |
||
592 | |||
593 | print('ver:', __version__ + '\n') |
||
594 | print('start ', time.strftime("%Y-%m-%d %H:%M:%S")) |
||
595 | |||
596 | opts = { |
||
597 | 'Input files': '#' + str(len(input_files)) + ' ' + str(input_files[:3]), |
||
598 | 'Multiprocessing': True if opt.number_processes > 1 else False, |
||
599 | 'Output csv': output_csv, |
||
600 | 'Seq ss fn': opt.seq_ss_filename, |
||
601 | 'Ignore pdb fn': opt.ignore_pdb_filename, |
||
602 | 'Native pdb': opt.native_pdb_filename, |
||
603 | 'RNAkb' : rnakb_option, |
||
604 | 'RASP' : rasp_option, |
||
605 | # 'rmsd' : rmsd_calc.RMSD_DEFAULT_METHOD, |
||
606 | 'Model path' : Config.ML_MODEL_PATH, |
||
607 | 'Methods' : ','.join(methods), |
||
608 | 'Verbose' : opt.verbose, |
||
609 | } |
||
610 | sg.poptions(opts) |
||
611 | |||
612 | runner = RunAllDirectory() |
||
613 | runner.run(input_files, output_csv, opt) |
||
614 | # meta-scoring |
||
615 | #output_csv = "test_data/1xjr_m500_m1.csv" |
||
616 | #mqs.do_scoring(output_csv) |
||
617 | |||
618 | log = t.end('process: %i' % opt.number_processes) |
||
619 | print('\n', log) |
||
620 | print('Output: %s \n' % output_csv) |
||
621 | ## log |
||
622 | log_fn = output_csv.replace('.csv', '.log') |
||
623 | f = open(log_fn, 'w') |
||
624 | f.write(log + '\n') |
||
625 | f.write(str(opts) + '\n') |
||
626 | f.write('Output: %s\n' % output_csv) |
||
627 | f.close() |
||
628 | print('logging: %s' % log_fn) |
||
629 | print('logging wrappers %s' % Config.LOG_DIRECTORY + os.sep) |
||
630 | |||
633 |