1
|
|
|
import time |
2
|
|
|
import pdb |
3
|
|
|
import copy |
4
|
|
|
import threading |
5
|
|
|
import logging |
6
|
|
|
from multiprocessing import Pool, Process |
7
|
|
|
import pytest |
8
|
|
|
import numpy as np |
9
|
|
|
|
10
|
|
|
from milvus import DataType |
11
|
|
|
from utils import * |
12
|
|
|
|
13
|
|
|
dim = 128 |
14
|
|
|
segment_size = 10 |
15
|
|
|
top_k_limit = 2048 |
16
|
|
|
collection_id = "search" |
17
|
|
|
tag = "1970-01-01" |
18
|
|
|
insert_interval_time = 1.5 |
19
|
|
|
nb = 6000 |
20
|
|
|
top_k = 10 |
21
|
|
|
nprobe = 1 |
22
|
|
|
epsilon = 0.001 |
23
|
|
|
field_name = "float_vector" |
24
|
|
|
default_index_name = "insert_index" |
25
|
|
|
default_fields = gen_default_fields() |
26
|
|
|
search_param = {"nprobe": 1} |
27
|
|
|
entity = gen_entities(1, is_normal=True) |
28
|
|
|
raw_vector, binary_entity = gen_binary_entities(1) |
29
|
|
|
entities = gen_entities(nb, is_normal=True) |
30
|
|
|
raw_vectors, binary_entities = gen_binary_entities(nb) |
31
|
|
|
query, query_vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, 1) |
32
|
|
|
# query = { |
33
|
|
|
# "bool": { |
34
|
|
|
# "must": [ |
35
|
|
|
# {"term": {"A": {"values": [1, 2, 5]}}}, |
36
|
|
|
# {"range": {"B": {"ranges": {"GT": 1, "LT": 100}}}}, |
37
|
|
|
# {"vector": {"Vec": {"topk": 10, "query": vec[: 1], "params": {"index_name": "IVFFLAT", "nprobe": 10}}}} |
38
|
|
|
# ], |
39
|
|
|
# }, |
40
|
|
|
# } |
41
|
|
|
def init_data(connect, collection, nb=6000, partition_tags=None): |
42
|
|
|
''' |
43
|
|
|
Generate entities and add it in collection |
44
|
|
|
''' |
45
|
|
|
global entities |
46
|
|
|
if nb == 6000: |
47
|
|
|
insert_entities = entities |
48
|
|
|
else: |
49
|
|
|
insert_entities = gen_entities(nb, is_normal=True) |
50
|
|
|
if partition_tags is None: |
51
|
|
|
ids = connect.insert(collection, insert_entities) |
52
|
|
|
else: |
53
|
|
|
ids = connect.insert(collection, insert_entities, partition_tag=partition_tags) |
54
|
|
|
connect.flush([collection]) |
55
|
|
|
return insert_entities, ids |
56
|
|
|
|
57
|
|
|
def init_binary_data(connect, collection, nb=6000, insert=True, partition_tags=None): |
58
|
|
|
''' |
59
|
|
|
Generate entities and add it in collection |
60
|
|
|
''' |
61
|
|
|
ids = [] |
62
|
|
|
global binary_entities |
63
|
|
|
global raw_vectors |
64
|
|
|
if nb == 6000: |
65
|
|
|
insert_entities = binary_entities |
66
|
|
|
insert_raw_vectors = raw_vectors |
67
|
|
|
else: |
68
|
|
|
insert_raw_vectors, insert_entities = gen_binary_entities(nb) |
69
|
|
|
if insert is True: |
70
|
|
|
if partition_tags is None: |
71
|
|
|
ids = connect.insert(collection, insert_entities) |
72
|
|
|
else: |
73
|
|
|
ids = connect.insert(collection, insert_entities, partition_tag=partition_tags) |
74
|
|
|
connect.flush([collection]) |
75
|
|
|
return insert_raw_vectors, insert_entities, ids |
76
|
|
|
|
77
|
|
|
|
78
|
|
|
class TestSearchBase: |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
""" |
82
|
|
|
generate valid create_index params |
83
|
|
|
""" |
84
|
|
|
@pytest.fixture( |
85
|
|
|
scope="function", |
86
|
|
|
params=gen_index() |
87
|
|
|
) |
88
|
|
|
def get_index(self, request, connect): |
89
|
|
|
if str(connect._cmd("mode")) == "CPU": |
90
|
|
|
if request.param["index_type"] in index_cpu_not_support(): |
91
|
|
|
pytest.skip("sq8h not support in CPU mode") |
92
|
|
|
return request.param |
93
|
|
|
|
94
|
|
|
@pytest.fixture( |
95
|
|
|
scope="function", |
96
|
|
|
params=gen_simple_index() |
97
|
|
|
) |
98
|
|
|
def get_simple_index(self, request, connect): |
99
|
|
|
if str(connect._cmd("mode")) == "CPU": |
100
|
|
|
if request.param["index_type"] in index_cpu_not_support(): |
101
|
|
|
pytest.skip("sq8h not support in CPU mode") |
102
|
|
|
return request.param |
103
|
|
|
|
104
|
|
|
@pytest.fixture( |
105
|
|
|
scope="function", |
106
|
|
|
params=gen_simple_index() |
107
|
|
|
) |
108
|
|
|
def get_jaccard_index(self, request, connect): |
109
|
|
|
logging.getLogger().info(request.param) |
110
|
|
|
if request.param["index_type"] in binary_support(): |
111
|
|
|
return request.param |
112
|
|
|
else: |
113
|
|
|
pytest.skip("Skip index Temporary") |
114
|
|
|
|
115
|
|
|
@pytest.fixture( |
116
|
|
|
scope="function", |
117
|
|
|
params=gen_simple_index() |
118
|
|
|
) |
119
|
|
|
def get_hamming_index(self, request, connect): |
120
|
|
|
logging.getLogger().info(request.param) |
121
|
|
|
if request.param["index_type"] in binary_support(): |
122
|
|
|
return request.param |
123
|
|
|
else: |
124
|
|
|
pytest.skip("Skip index Temporary") |
125
|
|
|
|
126
|
|
|
@pytest.fixture( |
127
|
|
|
scope="function", |
128
|
|
|
params=gen_simple_index() |
129
|
|
|
) |
130
|
|
|
def get_structure_index(self, request, connect): |
131
|
|
|
logging.getLogger().info(request.param) |
132
|
|
|
if request.param["index_type"] == "FLAT": |
133
|
|
|
return request.param |
134
|
|
|
else: |
135
|
|
|
pytest.skip("Skip index Temporary") |
136
|
|
|
|
137
|
|
|
""" |
138
|
|
|
generate top-k params |
139
|
|
|
""" |
140
|
|
|
@pytest.fixture( |
141
|
|
|
scope="function", |
142
|
|
|
params=[1, 10, 2049] |
143
|
|
|
) |
144
|
|
|
def get_top_k(self, request): |
145
|
|
|
yield request.param |
146
|
|
|
|
147
|
|
|
@pytest.fixture( |
148
|
|
|
scope="function", |
149
|
|
|
params=[1, 10, 1100] |
150
|
|
|
) |
151
|
|
|
def get_nq(self, request): |
152
|
|
|
yield request.param |
153
|
|
|
|
154
|
|
|
def test_search_flat(self, connect, collection, get_top_k, get_nq): |
155
|
|
|
''' |
156
|
|
|
target: test basic search fuction, all the search params is corrent, change top-k value |
157
|
|
|
method: search with the given vectors, check the result |
158
|
|
|
expected: the length of the result is top_k |
159
|
|
|
''' |
160
|
|
|
top_k = get_top_k |
161
|
|
|
nq = get_nq |
162
|
|
|
entities, ids = init_data(connect, collection) |
163
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq) |
164
|
|
|
if top_k <= top_k_limit: |
165
|
|
|
res = connect.search(collection, query) |
166
|
|
|
assert len(res[0]) == top_k |
167
|
|
|
assert res[0]._distances[0] <= epsilon |
168
|
|
|
assert check_id_result(res[0], ids[0]) |
169
|
|
|
else: |
170
|
|
|
with pytest.raises(Exception) as e: |
171
|
|
|
res = connect.search(collection, query) |
172
|
|
|
|
173
|
|
|
def test_search_field(self, connect, collection, get_top_k, get_nq): |
174
|
|
|
''' |
175
|
|
|
target: test basic search fuction, all the search params is corrent, change top-k value |
176
|
|
|
method: search with the given vectors, check the result |
177
|
|
|
expected: the length of the result is top_k |
178
|
|
|
''' |
179
|
|
|
top_k = get_top_k |
180
|
|
|
nq = get_nq |
181
|
|
|
entities, ids = init_data(connect, collection) |
182
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq) |
183
|
|
|
if top_k <= top_k_limit: |
184
|
|
|
res = connect.search(collection, query, fields=["vector"]) |
185
|
|
|
assert len(res[0]) == top_k |
186
|
|
|
assert res[0]._distances[0] <= epsilon |
187
|
|
|
assert check_id_result(res[0], ids[0]) |
188
|
|
|
# TODO |
189
|
|
|
res = connect.search(collection, query, fields=["float"]) |
190
|
|
|
# TODO |
191
|
|
|
else: |
192
|
|
|
with pytest.raises(Exception) as e: |
193
|
|
|
res = connect.search(collection, query) |
194
|
|
|
|
195
|
|
|
@pytest.mark.level(2) |
196
|
|
|
def test_search_after_index(self, connect, collection, get_simple_index, get_top_k, get_nq): |
197
|
|
|
''' |
198
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
199
|
|
|
method: search with the given vectors, check the result |
200
|
|
|
expected: the length of the result is top_k |
201
|
|
|
''' |
202
|
|
|
top_k = get_top_k |
203
|
|
|
nq = get_nq |
204
|
|
|
|
205
|
|
|
index_type = get_simple_index["index_type"] |
206
|
|
|
if index_type == "IVF_PQ": |
207
|
|
|
pytest.skip("Skip PQ") |
208
|
|
|
entities, ids = init_data(connect, collection) |
209
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
210
|
|
|
search_param = get_search_param(index_type) |
211
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
212
|
|
|
if top_k > top_k_limit: |
213
|
|
|
with pytest.raises(Exception) as e: |
214
|
|
|
res = connect.search(collection, query) |
215
|
|
|
else: |
216
|
|
|
res = connect.search(collection, query) |
217
|
|
|
assert len(res) == nq |
218
|
|
|
assert len(res[0]) >= top_k |
219
|
|
|
assert res[0]._distances[0] < epsilon |
220
|
|
|
assert check_id_result(res[0], ids[0]) |
221
|
|
|
|
222
|
|
|
def test_search_index_partition(self, connect, collection, get_simple_index, get_top_k, get_nq): |
223
|
|
|
''' |
224
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
225
|
|
|
method: add vectors into collection, search with the given vectors, check the result |
226
|
|
|
expected: the length of the result is top_k, search collection with partition tag return empty |
227
|
|
|
''' |
228
|
|
|
top_k = get_top_k |
229
|
|
|
nq = get_nq |
230
|
|
|
|
231
|
|
|
index_type = get_simple_index["index_type"] |
232
|
|
|
if index_type == "IVF_PQ": |
233
|
|
|
pytest.skip("Skip PQ") |
234
|
|
|
connect.create_partition(collection, tag) |
235
|
|
|
entities, ids = init_data(connect, collection) |
236
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
237
|
|
|
search_param = get_search_param(index_type) |
238
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
239
|
|
|
if top_k > top_k_limit: |
240
|
|
|
with pytest.raises(Exception) as e: |
241
|
|
|
res = connect.search(collection, query) |
242
|
|
|
else: |
243
|
|
|
res = connect.search(collection, query) |
244
|
|
|
assert len(res) == nq |
245
|
|
|
assert len(res[0]) >= top_k |
246
|
|
|
assert res[0]._distances[0] < epsilon |
247
|
|
|
assert check_id_result(res[0], ids[0]) |
248
|
|
|
res = connect.search(collection, query, partition_tags=[tag]) |
249
|
|
|
assert len(res) == nq |
250
|
|
|
|
251
|
|
|
def test_search_index_partition_B(self, connect, collection, get_simple_index, get_top_k, get_nq): |
252
|
|
|
''' |
253
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
254
|
|
|
method: search with the given vectors, check the result |
255
|
|
|
expected: the length of the result is top_k |
256
|
|
|
''' |
257
|
|
|
top_k = get_top_k |
258
|
|
|
nq = get_nq |
259
|
|
|
|
260
|
|
|
index_type = get_simple_index["index_type"] |
261
|
|
|
if index_type == "IVF_PQ": |
262
|
|
|
pytest.skip("Skip PQ") |
263
|
|
|
connect.create_partition(collection, tag) |
264
|
|
|
entities, ids = init_data(connect, collection, partition_tags=tag) |
265
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
266
|
|
|
search_param = get_search_param(index_type) |
267
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
268
|
|
|
for tags in [[tag], [tag, "new_tag"]]: |
269
|
|
|
if top_k > top_k_limit: |
270
|
|
|
with pytest.raises(Exception) as e: |
271
|
|
|
res = connect.search(collection, query, partition_tags=tags) |
272
|
|
|
else: |
273
|
|
|
res = connect.search(collection, query, partition_tags=tags) |
274
|
|
|
assert len(res) == nq |
275
|
|
|
assert len(res[0]) >= top_k |
276
|
|
|
assert res[0]._distances[0] < epsilon |
277
|
|
|
assert check_id_result(res[0], ids[0]) |
278
|
|
|
|
279
|
|
|
@pytest.mark.level(2) |
280
|
|
|
def test_search_index_partition_C(self, connect, collection, get_top_k, get_nq): |
281
|
|
|
''' |
282
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
283
|
|
|
method: search with the given vectors and tag (tag name not existed in collection), check the result |
284
|
|
|
expected: error raised |
285
|
|
|
''' |
286
|
|
|
top_k = get_top_k |
287
|
|
|
nq = get_nq |
288
|
|
|
entities, ids = init_data(connect, collection) |
289
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq) |
290
|
|
|
if top_k > top_k_limit: |
291
|
|
|
with pytest.raises(Exception) as e: |
292
|
|
|
res = connect.search(collection, query, partition_tags=["new_tag"]) |
293
|
|
|
else: |
294
|
|
|
res = connect.search(collection, query, partition_tags=["new_tag"]) |
295
|
|
|
assert len(res) == nq |
296
|
|
|
assert len(res[0]) == 0 |
297
|
|
|
|
298
|
|
View Code Duplication |
@pytest.mark.level(2) |
|
|
|
|
299
|
|
|
def test_search_index_partitions(self, connect, collection, get_simple_index, get_top_k): |
300
|
|
|
''' |
301
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
302
|
|
|
method: search collection with the given vectors and tags, check the result |
303
|
|
|
expected: the length of the result is top_k |
304
|
|
|
''' |
305
|
|
|
top_k = get_top_k |
306
|
|
|
nq = 2 |
307
|
|
|
new_tag = "new_tag" |
308
|
|
|
index_type = get_simple_index["index_type"] |
309
|
|
|
if index_type == "IVF_PQ": |
310
|
|
|
pytest.skip("Skip PQ") |
311
|
|
|
connect.create_partition(collection, tag) |
312
|
|
|
connect.create_partition(collection, new_tag) |
313
|
|
|
entities, ids = init_data(connect, collection, partition_tags=tag) |
314
|
|
|
new_entities, new_ids = init_data(connect, collection, nb=6001, partition_tags=new_tag) |
315
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
316
|
|
|
search_param = get_search_param(index_type) |
317
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
318
|
|
|
if top_k > top_k_limit: |
319
|
|
|
with pytest.raises(Exception) as e: |
320
|
|
|
res = connect.search(collection, query) |
321
|
|
|
else: |
322
|
|
|
res = connect.search(collection, query) |
323
|
|
|
assert check_id_result(res[0], ids[0]) |
324
|
|
|
assert not check_id_result(res[1], new_ids[0]) |
325
|
|
|
assert res[0]._distances[0] < epsilon |
326
|
|
|
assert res[1]._distances[0] < epsilon |
327
|
|
|
res = connect.search(collection, query, partition_tags=["new_tag"]) |
328
|
|
|
assert res[0]._distances[0] > epsilon |
329
|
|
|
assert res[1]._distances[0] > epsilon |
330
|
|
|
|
331
|
|
|
# TODO: |
332
|
|
View Code Duplication |
@pytest.mark.level(2) |
|
|
|
|
333
|
|
|
def _test_search_index_partitions_B(self, connect, collection, get_simple_index, get_top_k): |
334
|
|
|
''' |
335
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
336
|
|
|
method: search collection with the given vectors and tags, check the result |
337
|
|
|
expected: the length of the result is top_k |
338
|
|
|
''' |
339
|
|
|
top_k = get_top_k |
340
|
|
|
nq = 2 |
341
|
|
|
tag = "tag" |
342
|
|
|
new_tag = "new_tag" |
343
|
|
|
index_type = get_simple_index["index_type"] |
344
|
|
|
if index_type == "IVF_PQ": |
345
|
|
|
pytest.skip("Skip PQ") |
346
|
|
|
connect.create_partition(collection, tag) |
347
|
|
|
connect.create_partition(collection, new_tag) |
348
|
|
|
entities, ids = init_data(connect, collection, partition_tags=tag) |
349
|
|
|
new_entities, new_ids = init_data(connect, collection, nb=6001, partition_tags=new_tag) |
350
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
351
|
|
|
search_param = get_search_param(index_type) |
352
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, new_entities, top_k, nq, search_params=search_param) |
353
|
|
|
if top_k > top_k_limit: |
354
|
|
|
with pytest.raises(Exception) as e: |
355
|
|
|
res = connect.search(collection, query) |
356
|
|
|
else: |
357
|
|
|
res = connect.search(collection, query, partition_tags=["(.*)tag"]) |
358
|
|
|
assert not check_id_result(res[0], ids[0]) |
359
|
|
|
assert check_id_result(res[1], new_ids[0]) |
360
|
|
|
assert res[0]._distances[0] > epsilon |
361
|
|
|
assert res[1]._distances[0] < epsilon |
362
|
|
|
res = connect.search(collection, query, partition_tags=["new(.*)"]) |
363
|
|
|
assert res[0]._distances[0] > epsilon |
364
|
|
|
assert res[1]._distances[0] < epsilon |
365
|
|
|
|
366
|
|
|
# |
367
|
|
|
# test for ip metric |
368
|
|
|
# |
369
|
|
|
@pytest.mark.level(2) |
370
|
|
|
def test_search_ip_flat(self, connect, ip_collection, get_simple_index, get_top_k, get_nq): |
371
|
|
|
''' |
372
|
|
|
target: test basic search fuction, all the search params is corrent, change top-k value |
373
|
|
|
method: search with the given vectors, check the result |
374
|
|
|
expected: the length of the result is top_k |
375
|
|
|
''' |
376
|
|
|
top_k = get_top_k |
377
|
|
|
nq = get_nq |
378
|
|
|
entities, ids = init_data(connect, ip_collection) |
379
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq) |
380
|
|
|
if top_k <= top_k_limit: |
381
|
|
|
res = connect.search(ip_collection, query) |
382
|
|
|
assert len(res[0]) == top_k |
383
|
|
|
assert res[0]._distances[0] >= 1 - gen_inaccuracy(res[0]._distances[0]) |
384
|
|
|
assert check_id_result(res[0], ids[0]) |
385
|
|
|
else: |
386
|
|
|
with pytest.raises(Exception) as e: |
387
|
|
|
res = connect.search(ip_collection, query) |
388
|
|
|
|
389
|
|
|
def test_search_ip_after_index(self, connect, ip_collection, get_simple_index, get_top_k, get_nq): |
390
|
|
|
''' |
391
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
392
|
|
|
method: search with the given vectors, check the result |
393
|
|
|
expected: the length of the result is top_k |
394
|
|
|
''' |
395
|
|
|
top_k = get_top_k |
396
|
|
|
nq = get_nq |
397
|
|
|
|
398
|
|
|
index_type = get_simple_index["index_type"] |
399
|
|
|
if index_type == "IVF_PQ": |
400
|
|
|
pytest.skip("Skip PQ") |
401
|
|
|
entities, ids = init_data(connect, ip_collection) |
402
|
|
|
connect.create_index(ip_collection, field_name, default_index_name, get_simple_index) |
403
|
|
|
search_param = get_search_param(index_type) |
404
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
405
|
|
|
if top_k > top_k_limit: |
406
|
|
|
with pytest.raises(Exception) as e: |
407
|
|
|
res = connect.search(ip_collection, query) |
408
|
|
|
else: |
409
|
|
|
res = connect.search(ip_collection, query) |
410
|
|
|
assert len(res) == nq |
411
|
|
|
assert len(res[0]) >= top_k |
412
|
|
|
assert check_id_result(res[0], ids[0]) |
413
|
|
|
assert res[0]._distances[0] >= 1 - gen_inaccuracy(res[0]._distances[0]) |
414
|
|
|
|
415
|
|
|
@pytest.mark.level(2) |
416
|
|
|
def test_search_ip_index_partition(self, connect, ip_collection, get_simple_index, get_top_k, get_nq): |
417
|
|
|
''' |
418
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
419
|
|
|
method: add vectors into collection, search with the given vectors, check the result |
420
|
|
|
expected: the length of the result is top_k, search collection with partition tag return empty |
421
|
|
|
''' |
422
|
|
|
top_k = get_top_k |
423
|
|
|
nq = get_nq |
424
|
|
|
|
425
|
|
|
index_type = get_simple_index["index_type"] |
426
|
|
|
if index_type == "IVF_PQ": |
427
|
|
|
pytest.skip("Skip PQ") |
428
|
|
|
connect.create_partition(ip_collection, tag) |
429
|
|
|
entities, ids = init_data(connect, ip_collection) |
430
|
|
|
connect.create_index(ip_collection, field_name, default_index_name, get_simple_index) |
431
|
|
|
search_param = get_search_param(index_type) |
432
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
433
|
|
|
if top_k > top_k_limit: |
434
|
|
|
with pytest.raises(Exception) as e: |
435
|
|
|
res = connect.search(ip_collection, query) |
436
|
|
|
else: |
437
|
|
|
res = connect.search(ip_collection, query) |
438
|
|
|
assert len(res) == nq |
439
|
|
|
assert len(res[0]) >= top_k |
440
|
|
|
assert res[0]._distances[0] >= 1 - gen_inaccuracy(res[0]._distances[0]) |
441
|
|
|
assert check_id_result(res[0], ids[0]) |
442
|
|
|
res = connect.search(ip_collection, query, partition_tags=[tag]) |
443
|
|
|
assert len(res) == nq |
444
|
|
|
|
445
|
|
|
@pytest.mark.level(2) |
446
|
|
|
def test_search_ip_index_partitions(self, connect, ip_collection, get_simple_index, get_top_k): |
447
|
|
|
''' |
448
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
449
|
|
|
method: search ip_collection with the given vectors and tags, check the result |
450
|
|
|
expected: the length of the result is top_k |
451
|
|
|
''' |
452
|
|
|
top_k = get_top_k |
453
|
|
|
nq = 2 |
454
|
|
|
new_tag = "new_tag" |
455
|
|
|
index_type = get_simple_index["index_type"] |
456
|
|
|
if index_type == "IVF_PQ": |
457
|
|
|
pytest.skip("Skip PQ") |
458
|
|
|
connect.create_partition(ip_collection, tag) |
459
|
|
|
connect.create_partition(ip_collection, new_tag) |
460
|
|
|
entities, ids = init_data(connect, ip_collection, partition_tags=tag) |
461
|
|
|
new_entities, new_ids = init_data(connect, ip_collection, nb=6001, partition_tags=new_tag) |
462
|
|
|
connect.create_index(ip_collection, field_name, default_index_name, get_simple_index) |
463
|
|
|
search_param = get_search_param(index_type) |
464
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
465
|
|
|
if top_k > top_k_limit: |
466
|
|
|
with pytest.raises(Exception) as e: |
467
|
|
|
res = connect.search(ip_collection, query) |
468
|
|
|
else: |
469
|
|
|
res = connect.search(ip_collection, query) |
470
|
|
|
assert check_id_result(res[0], ids[0]) |
471
|
|
|
assert not check_id_result(res[1], new_ids[0]) |
472
|
|
|
assert res[0]._distances[0] >= 1 - gen_inaccuracy(res[0]._distances[0]) |
473
|
|
|
assert res[1]._distances[0] >= 1 - gen_inaccuracy(res[1]._distances[0]) |
474
|
|
|
res = connect.search(ip_collection, query, partition_tags=["new_tag"]) |
475
|
|
|
assert res[0]._distances[0] < 1 - gen_inaccuracy(res[0]._distances[0]) |
476
|
|
|
# TODO: |
477
|
|
|
# assert res[1]._distances[0] >= 1 - gen_inaccuracy(res[1]._distances[0]) |
478
|
|
|
|
479
|
|
|
@pytest.mark.level(2) |
480
|
|
|
def test_search_without_connect(self, dis_connect, collection): |
481
|
|
|
''' |
482
|
|
|
target: test search vectors without connection |
483
|
|
|
method: use dis connected instance, call search method and check if search successfully |
484
|
|
|
expected: raise exception |
485
|
|
|
''' |
486
|
|
|
with pytest.raises(Exception) as e: |
487
|
|
|
res = dis_connect.search(collection, query) |
488
|
|
|
|
489
|
|
|
def test_search_collection_name_not_existed(self, connect): |
490
|
|
|
''' |
491
|
|
|
target: search collection not existed |
492
|
|
|
method: search with the random collection_name, which is not in db |
493
|
|
|
expected: status not ok |
494
|
|
|
''' |
495
|
|
|
collection_name = gen_unique_str(collection_id) |
496
|
|
|
with pytest.raises(Exception) as e: |
497
|
|
|
res = connect.search(collection_name, query) |
498
|
|
|
|
499
|
|
View Code Duplication |
def test_search_distance_l2(self, connect, collection): |
|
|
|
|
500
|
|
|
''' |
501
|
|
|
target: search collection, and check the result: distance |
502
|
|
|
method: compare the return distance value with value computed with Euclidean |
503
|
|
|
expected: the return distance equals to the computed value |
504
|
|
|
''' |
505
|
|
|
nq = 2 |
506
|
|
|
search_param = {"nprobe" : 1} |
507
|
|
|
entities, ids = init_data(connect, collection, nb=nq) |
508
|
|
|
query, vecs = gen_query_vectors_rand_entities(field_name, entities, top_k, nq, search_params=search_param) |
509
|
|
|
inside_query, inside_vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
510
|
|
|
distance_0 = l2(vecs[0], inside_vecs[0]) |
511
|
|
|
distance_1 = l2(vecs[0], inside_vecs[1]) |
512
|
|
|
res = connect.search(collection, query) |
513
|
|
|
assert abs(np.sqrt(res[0]._distances[0]) - min(distance_0, distance_1)) <= gen_inaccuracy(res[0]._distances[0]) |
514
|
|
|
|
515
|
|
|
# TODO: distance problem |
516
|
|
View Code Duplication |
def _test_search_distance_l2_after_index(self, connect, collection, get_simple_index): |
|
|
|
|
517
|
|
|
''' |
518
|
|
|
target: search collection, and check the result: distance |
519
|
|
|
method: compare the return distance value with value computed with Inner product |
520
|
|
|
expected: the return distance equals to the computed value |
521
|
|
|
''' |
522
|
|
|
index_type = get_simple_index["index_type"] |
523
|
|
|
nq = 2 |
524
|
|
|
entities, ids = init_data(connect, collection) |
525
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
526
|
|
|
search_param = get_search_param(index_type) |
527
|
|
|
query, vecs = gen_query_vectors_rand_entities(field_name, entities, top_k, nq, search_params=search_param) |
528
|
|
|
inside_vecs = entities[-1]["values"] |
529
|
|
|
min_distance = 1.0 |
530
|
|
|
for i in range(nb): |
531
|
|
|
tmp_dis = l2(vecs[0], inside_vecs[i]) |
532
|
|
|
if min_distance > tmp_dis: |
533
|
|
|
min_distance = tmp_dis |
534
|
|
|
res = connect.search(collection, query) |
535
|
|
|
assert abs(np.sqrt(res[0]._distances[0]) - min_distance) <= gen_inaccuracy(res[0]._distances[0]) |
536
|
|
|
|
537
|
|
View Code Duplication |
def test_search_distance_ip(self, connect, ip_collection): |
|
|
|
|
538
|
|
|
''' |
539
|
|
|
target: search ip_collection, and check the result: distance |
540
|
|
|
method: compare the return distance value with value computed with Inner product |
541
|
|
|
expected: the return distance equals to the computed value |
542
|
|
|
''' |
543
|
|
|
nq = 2 |
544
|
|
|
search_param = {"nprobe" : 1} |
545
|
|
|
entities, ids = init_data(connect, ip_collection, nb=nq) |
546
|
|
|
query, vecs = gen_query_vectors_rand_entities(field_name, entities, top_k, nq, search_params=search_param) |
547
|
|
|
inside_query, inside_vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
548
|
|
|
distance_0 = ip(vecs[0], inside_vecs[0]) |
549
|
|
|
distance_1 = ip(vecs[0], inside_vecs[1]) |
550
|
|
|
res = connect.search(ip_collection, query) |
551
|
|
|
assert abs(res[0]._distances[0] - max(distance_0, distance_1)) <= gen_inaccuracy(res[0]._distances[0]) |
552
|
|
|
|
553
|
|
|
# TODO: distance problem |
554
|
|
View Code Duplication |
def _test_search_distance_ip_after_index(self, connect, ip_collection, get_simple_index): |
|
|
|
|
555
|
|
|
''' |
556
|
|
|
target: search collection, and check the result: distance |
557
|
|
|
method: compare the return distance value with value computed with Inner product |
558
|
|
|
expected: the return distance equals to the computed value |
559
|
|
|
''' |
560
|
|
|
index_type = get_simple_index["index_type"] |
561
|
|
|
nq = 2 |
562
|
|
|
entities, ids = init_data(connect, ip_collection) |
563
|
|
|
connect.create_index(ip_collection, field_name, default_index_name, get_simple_index) |
564
|
|
|
search_param = get_search_param(index_type) |
565
|
|
|
query, vecs = gen_query_vectors_rand_entities(field_name, entities, top_k, nq, search_params=search_param) |
566
|
|
|
inside_vecs = entities[-1]["values"] |
567
|
|
|
max_distance = 0 |
568
|
|
|
for i in range(nb): |
569
|
|
|
tmp_dis = ip(vecs[0], inside_vecs[i]) |
570
|
|
|
if max_distance < tmp_dis: |
571
|
|
|
max_distance = tmp_dis |
572
|
|
|
res = connect.search(ip_collection, query) |
573
|
|
|
assert abs(res[0]._distances[0] - max_distance) <= gen_inaccuracy(res[0]._distances[0]) |
574
|
|
|
|
575
|
|
|
# TODO: |
576
|
|
|
def _test_search_distance_jaccard_flat_index(self, connect, jac_collection): |
577
|
|
|
''' |
578
|
|
|
target: search ip_collection, and check the result: distance |
579
|
|
|
method: compare the return distance value with value computed with Inner product |
580
|
|
|
expected: the return distance equals to the computed value |
581
|
|
|
''' |
582
|
|
|
# from scipy.spatial import distance |
583
|
|
|
nprobe = 512 |
584
|
|
|
int_vectors, entities, ids = init_binary_data(connect, jac_collection, nb=2) |
585
|
|
|
query_int_vectors, query_entities, tmp_ids = init_binary_data(connect, jac_collection, nb=1, insert=False) |
586
|
|
|
distance_0 = jaccard(query_int_vectors[0], int_vectors[0]) |
587
|
|
|
distance_1 = jaccard(query_int_vectors[0], int_vectors[1]) |
588
|
|
|
res = connect.search(jac_collection, query_entities) |
589
|
|
|
assert abs(res[0]._distances[0] - min(distance_0, distance_1)) <= epsilon |
590
|
|
|
|
591
|
|
|
def _test_search_distance_hamming_flat_index(self, connect, ham_collection): |
592
|
|
|
''' |
593
|
|
|
target: search ip_collection, and check the result: distance |
594
|
|
|
method: compare the return distance value with value computed with Inner product |
595
|
|
|
expected: the return distance equals to the computed value |
596
|
|
|
''' |
597
|
|
|
# from scipy.spatial import distance |
598
|
|
|
nprobe = 512 |
599
|
|
|
int_vectors, entities, ids = init_binary_data(connect, ham_collection, nb=2) |
600
|
|
|
query_int_vectors, query_entities, tmp_ids = init_binary_data(connect, ham_collection, nb=1, insert=False) |
601
|
|
|
distance_0 = hamming(query_int_vectors[0], int_vectors[0]) |
602
|
|
|
distance_1 = hamming(query_int_vectors[0], int_vectors[1]) |
603
|
|
|
res = connect.search(ham_collection, query_entities) |
604
|
|
|
assert abs(res[0][0].distance - min(distance_0, distance_1).astype(float)) <= epsilon |
605
|
|
|
|
606
|
|
View Code Duplication |
def _test_search_distance_substructure_flat_index(self, connect, substructure_collection): |
|
|
|
|
607
|
|
|
''' |
608
|
|
|
target: search ip_collection, and check the result: distance |
609
|
|
|
method: compare the return distance value with value computed with Inner product |
610
|
|
|
expected: the return distance equals to the computed value |
611
|
|
|
''' |
612
|
|
|
# from scipy.spatial import distance |
613
|
|
|
nprobe = 512 |
614
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, substructure_collection, nb=2) |
615
|
|
|
index_type = "FLAT" |
616
|
|
|
index_param = { |
617
|
|
|
"nlist": 16384 |
618
|
|
|
} |
619
|
|
|
connect.create_index(substructure_collection, index_type, index_param) |
620
|
|
|
logging.getLogger().info(connect.get_collection_info(substructure_collection)) |
621
|
|
|
logging.getLogger().info(connect.get_index_info(substructure_collection)) |
622
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, substructure_collection, nb=1, insert=False) |
623
|
|
|
distance_0 = substructure(query_int_vectors[0], int_vectors[0]) |
624
|
|
|
distance_1 = substructure(query_int_vectors[0], int_vectors[1]) |
625
|
|
|
search_param = get_search_param(index_type) |
626
|
|
|
status, result = connect.search(substructure_collection, top_k, query_vecs, params=search_param) |
627
|
|
|
logging.getLogger().info(status) |
628
|
|
|
logging.getLogger().info(result) |
629
|
|
|
assert len(result[0]) == 0 |
630
|
|
|
|
631
|
|
View Code Duplication |
def _test_search_distance_substructure_flat_index_B(self, connect, substructure_collection): |
|
|
|
|
632
|
|
|
''' |
633
|
|
|
target: search ip_collection, and check the result: distance |
634
|
|
|
method: compare the return distance value with value computed with SUB |
635
|
|
|
expected: the return distance equals to the computed value |
636
|
|
|
''' |
637
|
|
|
# from scipy.spatial import distance |
638
|
|
|
top_k = 3 |
639
|
|
|
nprobe = 512 |
640
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, substructure_collection, nb=2) |
641
|
|
|
index_type = "FLAT" |
642
|
|
|
index_param = { |
643
|
|
|
"nlist": 16384 |
644
|
|
|
} |
645
|
|
|
connect.create_index(substructure_collection, index_type, index_param) |
646
|
|
|
logging.getLogger().info(connect.get_collection_info(substructure_collection)) |
647
|
|
|
logging.getLogger().info(connect.get_index_info(substructure_collection)) |
648
|
|
|
query_int_vectors, query_vecs = gen_binary_sub_vectors(int_vectors, 2) |
649
|
|
|
search_param = get_search_param(index_type) |
650
|
|
|
status, result = connect.search(substructure_collection, top_k, query_vecs, params=search_param) |
651
|
|
|
logging.getLogger().info(status) |
652
|
|
|
logging.getLogger().info(result) |
653
|
|
|
assert len(result[0]) == 1 |
654
|
|
|
assert len(result[1]) == 1 |
655
|
|
|
assert result[0][0].distance <= epsilon |
656
|
|
|
assert result[0][0].id == ids[0] |
657
|
|
|
assert result[1][0].distance <= epsilon |
658
|
|
|
assert result[1][0].id == ids[1] |
659
|
|
|
|
660
|
|
View Code Duplication |
def _test_search_distance_superstructure_flat_index(self, connect, superstructure_collection): |
|
|
|
|
661
|
|
|
''' |
662
|
|
|
target: search ip_collection, and check the result: distance |
663
|
|
|
method: compare the return distance value with value computed with Inner product |
664
|
|
|
expected: the return distance equals to the computed value |
665
|
|
|
''' |
666
|
|
|
# from scipy.spatial import distance |
667
|
|
|
nprobe = 512 |
668
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, superstructure_collection, nb=2) |
669
|
|
|
index_type = "FLAT" |
670
|
|
|
index_param = { |
671
|
|
|
"nlist": 16384 |
672
|
|
|
} |
673
|
|
|
connect.create_index(superstructure_collection, index_type, index_param) |
674
|
|
|
logging.getLogger().info(connect.get_collection_info(superstructure_collection)) |
675
|
|
|
logging.getLogger().info(connect.get_index_info(superstructure_collection)) |
676
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, superstructure_collection, nb=1, insert=False) |
677
|
|
|
distance_0 = superstructure(query_int_vectors[0], int_vectors[0]) |
678
|
|
|
distance_1 = superstructure(query_int_vectors[0], int_vectors[1]) |
679
|
|
|
search_param = get_search_param(index_type) |
680
|
|
|
status, result = connect.search(superstructure_collection, top_k, query_vecs, params=search_param) |
681
|
|
|
logging.getLogger().info(status) |
682
|
|
|
logging.getLogger().info(result) |
683
|
|
|
assert len(result[0]) == 0 |
684
|
|
|
|
685
|
|
View Code Duplication |
def _test_search_distance_superstructure_flat_index_B(self, connect, superstructure_collection): |
|
|
|
|
686
|
|
|
''' |
687
|
|
|
target: search ip_collection, and check the result: distance |
688
|
|
|
method: compare the return distance value with value computed with SUPER |
689
|
|
|
expected: the return distance equals to the computed value |
690
|
|
|
''' |
691
|
|
|
# from scipy.spatial import distance |
692
|
|
|
top_k = 3 |
693
|
|
|
nprobe = 512 |
694
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, superstructure_collection, nb=2) |
695
|
|
|
index_type = "FLAT" |
696
|
|
|
index_param = { |
697
|
|
|
"nlist": 16384 |
698
|
|
|
} |
699
|
|
|
connect.create_index(superstructure_collection, index_type, index_param) |
700
|
|
|
logging.getLogger().info(connect.get_collection_info(superstructure_collection)) |
701
|
|
|
logging.getLogger().info(connect.get_index_info(superstructure_collection)) |
702
|
|
|
query_int_vectors, query_vecs = gen_binary_super_vectors(int_vectors, 2) |
703
|
|
|
search_param = get_search_param(index_type) |
704
|
|
|
status, result = connect.search(superstructure_collection, top_k, query_vecs, params=search_param) |
705
|
|
|
logging.getLogger().info(status) |
706
|
|
|
logging.getLogger().info(result) |
707
|
|
|
assert len(result[0]) == 2 |
708
|
|
|
assert len(result[1]) == 2 |
709
|
|
|
assert result[0][0].id in ids |
710
|
|
|
assert result[0][0].distance <= epsilon |
711
|
|
|
assert result[1][0].id in ids |
712
|
|
|
assert result[1][0].distance <= epsilon |
713
|
|
|
|
714
|
|
View Code Duplication |
def _test_search_distance_tanimoto_flat_index(self, connect, tanimoto_collection): |
|
|
|
|
715
|
|
|
''' |
716
|
|
|
target: search ip_collection, and check the result: distance |
717
|
|
|
method: compare the return distance value with value computed with Inner product |
718
|
|
|
expected: the return distance equals to the computed value |
719
|
|
|
''' |
720
|
|
|
# from scipy.spatial import distance |
721
|
|
|
nprobe = 512 |
722
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, tanimoto_collection, nb=2) |
723
|
|
|
index_type = "FLAT" |
724
|
|
|
index_param = { |
725
|
|
|
"nlist": 16384 |
726
|
|
|
} |
727
|
|
|
connect.create_index(tanimoto_collection, index_type, index_param) |
728
|
|
|
logging.getLogger().info(connect.get_collection_info(tanimoto_collection)) |
729
|
|
|
logging.getLogger().info(connect.get_index_info(tanimoto_collection)) |
730
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, tanimoto_collection, nb=1, insert=False) |
731
|
|
|
distance_0 = tanimoto(query_int_vectors[0], int_vectors[0]) |
732
|
|
|
distance_1 = tanimoto(query_int_vectors[0], int_vectors[1]) |
733
|
|
|
search_param = get_search_param(index_type) |
734
|
|
|
status, result = connect.search(tanimoto_collection, top_k, query_vecs, params=search_param) |
735
|
|
|
logging.getLogger().info(status) |
736
|
|
|
logging.getLogger().info(result) |
737
|
|
|
assert abs(result[0][0].distance - min(distance_0, distance_1)) <= epsilon |
738
|
|
|
|
739
|
|
|
@pytest.mark.timeout(30) |
740
|
|
|
def test_search_concurrent_multithreads(self, connect, args): |
741
|
|
|
''' |
742
|
|
|
target: test concurrent search with multiprocessess |
743
|
|
|
method: search with 10 processes, each process uses dependent connection |
744
|
|
|
expected: status ok and the returned vectors should be query_records |
745
|
|
|
''' |
746
|
|
|
nb = 100 |
747
|
|
|
top_k = 10 |
748
|
|
|
threads_num = 4 |
749
|
|
|
threads = [] |
750
|
|
|
collection = gen_unique_str(collection_id) |
751
|
|
|
uri = "tcp://%s:%s" % (args["ip"], args["port"]) |
752
|
|
|
# create collection |
753
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
754
|
|
|
milvus.create_collection(collection, default_fields) |
755
|
|
|
entities, ids = init_data(milvus, collection) |
756
|
|
|
def search(milvus): |
757
|
|
|
res = connect.search(collection, query) |
758
|
|
|
assert len(res) == 1 |
759
|
|
|
assert res[0]._entities[0].id in ids |
760
|
|
|
assert res[0]._distances[0] < epsilon |
761
|
|
|
for i in range(threads_num): |
762
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
763
|
|
|
t = threading.Thread(target=search, args=(milvus, )) |
764
|
|
|
threads.append(t) |
765
|
|
|
t.start() |
766
|
|
|
time.sleep(0.2) |
767
|
|
|
for t in threads: |
768
|
|
|
t.join() |
769
|
|
|
|
770
|
|
|
@pytest.mark.timeout(30) |
771
|
|
|
def test_search_concurrent_multithreads_single_connection(self, connect, args): |
772
|
|
|
''' |
773
|
|
|
target: test concurrent search with multiprocessess |
774
|
|
|
method: search with 10 processes, each process uses dependent connection |
775
|
|
|
expected: status ok and the returned vectors should be query_records |
776
|
|
|
''' |
777
|
|
|
nb = 100 |
778
|
|
|
top_k = 10 |
779
|
|
|
threads_num = 4 |
780
|
|
|
threads = [] |
781
|
|
|
collection = gen_unique_str(collection_id) |
782
|
|
|
uri = "tcp://%s:%s" % (args["ip"], args["port"]) |
783
|
|
|
# create collection |
784
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
785
|
|
|
milvus.create_collection(collection, default_fields) |
786
|
|
|
entities, ids = init_data(milvus, collection) |
787
|
|
|
def search(milvus): |
788
|
|
|
res = connect.search(collection, query) |
789
|
|
|
assert len(res) == 1 |
790
|
|
|
assert res[0]._entities[0].id in ids |
791
|
|
|
assert res[0]._distances[0] < epsilon |
792
|
|
|
for i in range(threads_num): |
793
|
|
|
t = threading.Thread(target=search, args=(milvus, )) |
794
|
|
|
threads.append(t) |
795
|
|
|
t.start() |
796
|
|
|
time.sleep(0.2) |
797
|
|
|
for t in threads: |
798
|
|
|
t.join() |
799
|
|
|
|
800
|
|
|
def test_search_multi_collections(self, connect, args): |
801
|
|
|
''' |
802
|
|
|
target: test search multi collections of L2 |
803
|
|
|
method: add vectors into 10 collections, and search |
804
|
|
|
expected: search status ok, the length of result |
805
|
|
|
''' |
806
|
|
|
num = 10 |
807
|
|
|
top_k = 10 |
808
|
|
|
nq = 20 |
809
|
|
|
for i in range(num): |
810
|
|
|
collection = gen_unique_str(collection_id+str(i)) |
811
|
|
|
connect.create_collection(collection, default_fields) |
812
|
|
|
entities, ids = init_data(connect, collection) |
813
|
|
|
assert len(ids) == nb |
814
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, nq, search_params=search_param) |
815
|
|
|
res = connect.search(collection, query) |
816
|
|
|
assert len(res) == nq |
817
|
|
|
for i in range(nq): |
818
|
|
|
assert check_id_result(res[i], ids[i]) |
819
|
|
|
assert res[i]._distances[0] < epsilon |
820
|
|
|
assert res[i]._distances[1] > epsilon |
821
|
|
|
|
822
|
|
|
""" |
823
|
|
|
****************************************************************** |
824
|
|
|
# The following cases are used to test `search_vectors` function |
825
|
|
|
# with invalid collection_name top-k / nprobe / query_range |
826
|
|
|
****************************************************************** |
827
|
|
|
""" |
828
|
|
|
|
829
|
|
|
class TestSearchInvalid(object): |
830
|
|
|
|
831
|
|
|
""" |
832
|
|
|
Test search collection with invalid collection names |
833
|
|
|
""" |
834
|
|
|
@pytest.fixture( |
835
|
|
|
scope="function", |
836
|
|
|
params=gen_invalid_strs() |
837
|
|
|
) |
838
|
|
|
def get_collection_name(self, request): |
839
|
|
|
yield request.param |
840
|
|
|
|
841
|
|
|
@pytest.fixture( |
842
|
|
|
scope="function", |
843
|
|
|
params=gen_invalid_strs() |
844
|
|
|
) |
845
|
|
|
def get_invalid_tag(self, request): |
846
|
|
|
yield request.param |
847
|
|
|
|
848
|
|
|
@pytest.fixture( |
849
|
|
|
scope="function", |
850
|
|
|
params=gen_invalid_strs() |
851
|
|
|
) |
852
|
|
|
def get_invalid_field(self, request): |
853
|
|
|
yield request.param |
854
|
|
|
|
855
|
|
|
@pytest.fixture( |
856
|
|
|
scope="function", |
857
|
|
|
params=gen_simple_index() |
858
|
|
|
) |
859
|
|
|
def get_simple_index(self, request, connect): |
860
|
|
|
if str(connect._cmd("mode")) == "CPU": |
861
|
|
|
if request.param["index_type"] in index_cpu_not_support(): |
862
|
|
|
pytest.skip("sq8h not support in CPU mode") |
863
|
|
|
return request.param |
864
|
|
|
|
865
|
|
|
@pytest.mark.level(2) |
866
|
|
|
def test_search_with_invalid_collection(self, connect, get_collection_name): |
867
|
|
|
collection_name = get_collection_name |
868
|
|
|
with pytest.raises(Exception) as e: |
869
|
|
|
res = connect.search(collection_name, query) |
870
|
|
|
|
871
|
|
|
@pytest.mark.level(1) |
872
|
|
|
def test_search_with_invalid_tag(self, connect, collection): |
873
|
|
|
tag = " " |
874
|
|
|
with pytest.raises(Exception) as e: |
875
|
|
|
res = connect.search(collection, query, partition_tags=tag) |
876
|
|
|
|
877
|
|
|
@pytest.mark.level(2) |
878
|
|
|
def test_search_with_invalid_field_name(self, connect, collection, get_invalid_field): |
879
|
|
|
fields = [get_invalid_field] |
880
|
|
|
with pytest.raises(Exception) as e: |
881
|
|
|
res = connect.search(collection, query, fields=fields) |
882
|
|
|
|
883
|
|
|
@pytest.mark.level(1) |
884
|
|
|
def test_search_with_not_existed_field_name(self, connect, collection): |
885
|
|
|
fields = [gen_unique_str("field_name")] |
886
|
|
|
with pytest.raises(Exception) as e: |
887
|
|
|
res = connect.search(collection, query, fields=fields) |
888
|
|
|
|
889
|
|
|
""" |
890
|
|
|
Test search collection with invalid query |
891
|
|
|
""" |
892
|
|
|
@pytest.fixture( |
893
|
|
|
scope="function", |
894
|
|
|
params=gen_invalid_ints() |
895
|
|
|
) |
896
|
|
|
def get_top_k(self, request): |
897
|
|
|
yield request.param |
898
|
|
|
|
899
|
|
|
@pytest.mark.level(1) |
900
|
|
|
def test_search_with_invalid_top_k(self, connect, collection, get_top_k): |
901
|
|
|
''' |
902
|
|
|
target: test search fuction, with the wrong top_k |
903
|
|
|
method: search with top_k |
904
|
|
|
expected: raise an error, and the connection is normal |
905
|
|
|
''' |
906
|
|
|
top_k = get_top_k |
907
|
|
|
query["bool"]["must"][0]["vector"][field_name]["topk"] = top_k |
908
|
|
|
with pytest.raises(Exception) as e: |
909
|
|
|
res = connect.search(collection, query) |
|
|
|
|
910
|
|
|
|
911
|
|
|
""" |
912
|
|
|
Test search collection with invalid search params |
913
|
|
|
""" |
914
|
|
|
@pytest.fixture( |
915
|
|
|
scope="function", |
916
|
|
|
params=gen_invaild_search_params() |
917
|
|
|
) |
918
|
|
|
def get_search_params(self, request): |
919
|
|
|
yield request.param |
920
|
|
|
|
921
|
|
|
# TODO: This case can all pass, but it's too slow |
922
|
|
View Code Duplication |
@pytest.mark.level(2) |
|
|
|
|
923
|
|
|
def _test_search_with_invalid_params(self, connect, collection, get_simple_index, get_search_params): |
924
|
|
|
''' |
925
|
|
|
target: test search fuction, with the wrong nprobe |
926
|
|
|
method: search with nprobe |
927
|
|
|
expected: raise an error, and the connection is normal |
928
|
|
|
''' |
929
|
|
|
search_params = get_search_params |
930
|
|
|
index_type = get_simple_index["index_type"] |
931
|
|
|
entities, ids = init_data(connect, collection) |
932
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
933
|
|
|
if search_params["index_type"] != index_type: |
934
|
|
|
pytest.skip("Skip case") |
935
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, 1, search_params=search_params["search_params"]) |
936
|
|
|
with pytest.raises(Exception) as e: |
937
|
|
|
res = connect.search(collection, query) |
938
|
|
|
|
939
|
|
View Code Duplication |
def test_search_with_empty_params(self, connect, collection, args, get_simple_index): |
|
|
|
|
940
|
|
|
''' |
941
|
|
|
target: test search fuction, with empty search params |
942
|
|
|
method: search with params |
943
|
|
|
expected: raise an error, and the connection is normal |
944
|
|
|
''' |
945
|
|
|
index_type = get_simple_index["index_type"] |
946
|
|
|
if args["handler"] == "HTTP": |
947
|
|
|
pytest.skip("skip in http mode") |
948
|
|
|
if index_type == "FLAT": |
949
|
|
|
pytest.skip("skip in FLAT index") |
950
|
|
|
entities, ids = init_data(connect, collection) |
951
|
|
|
connect.create_index(collection, field_name, default_index_name, get_simple_index) |
952
|
|
|
query, vecs = gen_query_vectors_inside_entities(field_name, entities, top_k, 1, search_params={}) |
953
|
|
|
with pytest.raises(Exception) as e: |
954
|
|
|
res = connect.search(collection, query) |
955
|
|
|
|
956
|
|
|
|
957
|
|
|
def check_id_result(result, id): |
958
|
|
|
limit_in = 5 |
959
|
|
|
ids = [entity.id for entity in result] |
960
|
|
|
if len(result) >= limit_in: |
961
|
|
|
return id in ids[:limit_in] |
962
|
|
|
else: |
963
|
|
|
return id in ids |
964
|
|
|
|