Code Duplication    Length = 14-17 lines in 2 locations

tests/milvus_benchmark/utils.py 1 location

@@ 47-63 (lines=17) @@
44
yaml.add_representer(literal_str, represent_literal_str)
45
46
47
def normalize(metric_type, X):
48
    """
49
    Normalize the vectors.
50
51
    If type equals ip, using sklearn.preprocessing.normalize to convert it
52
    """
53
    if metric_type == "ip":
54
        logger.info("Set normalize for metric_type: %s" % metric_type)
55
        X = sklearn.preprocessing.normalize(X, axis=1, norm='l2')
56
        X = X.tolist()
57
    elif metric_type in ["jaccard", "hamming", "sub", "super"]:
58
        tmp = []
59
        for _, item in enumerate(X):
60
            new_vector = bytes(np.packbits(item, axis=-1).tolist())
61
            tmp.append(new_vector)
62
        X = tmp
63
    return X
64
65
66
def get_unique_name(prefix=None):

tests/milvus_benchmark/runner.py 1 location

@@ 97-110 (lines=14) @@
94
        """
95
        pass
96
97
    def normalize(self, metric_type, X):
98
        if metric_type == "ip":
99
            logger.info("Set normalize for metric_type: %s" % metric_type)
100
            X = sklearn.preprocessing.normalize(X, axis=1, norm='l2')
101
            X = X.astype(np.float32)
102
        elif metric_type == "l2":
103
            X = X.astype(np.float32)
104
        elif metric_type in ["jaccard", "hamming", "sub", "super"]:
105
            tmp = []
106
            for _, item in enumerate(X):
107
                new_vector = bytes(np.packbits(item, axis=-1).tolist())
108
                tmp.append(new_vector)
109
            X = tmp
110
        return X
111
112
    def generate_combinations(self, args):
113
        if isinstance(args, list):