Code Duplication    Length = 15-18 lines in 2 locations

tests/milvus_python_test/entity/test_search.py 2 locations

@@ 540-557 (lines=18) @@
537
        assert abs(np.sqrt(res[0]._distances[0]) - min_distance) <= gen_inaccuracy(res[0]._distances[0])
538
539
    # TODO
540
    @pytest.mark.level(2)
541
    def test_search_distance_ip(self, connect, collection):
542
        '''
543
        target: search collection, and check the result: distance
544
        method: compare the return distance value with value computed with Inner product
545
        expected: the return distance equals to the computed value
546
        '''
547
        nq = 2
548
        metirc_type = "IP"
549
        search_param = {"nprobe": 1}
550
        entities, ids = init_data(connect, collection, nb=nq)
551
        query, vecs = gen_query_vectors(field_name, entities, top_k, nq, rand_vector=True, metric_type=metirc_type,
552
                                        search_params=search_param)
553
        inside_query, inside_vecs = gen_query_vectors(field_name, entities, top_k, nq, search_params=search_param)
554
        distance_0 = ip(vecs[0], inside_vecs[0])
555
        distance_1 = ip(vecs[0], inside_vecs[1])
556
        res = connect.search(collection, query)
557
        assert abs(res[0]._distances[0] - max(distance_0, distance_1)) <= gen_inaccuracy(res[0]._distances[0])
558
559
    # TODO: distance problem
560
    def _test_search_distance_ip_after_index(self, connect, collection, get_simple_index):
@@ 501-515 (lines=15) @@
498
        with pytest.raises(Exception) as e:
499
            res = connect.search(collection_name, default_query)
500
501
    def test_search_distance_l2(self, connect, collection):
502
        '''
503
        target: search collection, and check the result: distance
504
        method: compare the return distance value with value computed with Euclidean
505
        expected: the return distance equals to the computed value
506
        '''
507
        nq = 2
508
        search_param = {"nprobe": 1}
509
        entities, ids = init_data(connect, collection, nb=nq)
510
        query, vecs = gen_query_vectors(field_name, entities, top_k, nq, rand_vector=True, search_params=search_param)
511
        inside_query, inside_vecs = gen_query_vectors(field_name, entities, top_k, nq, search_params=search_param)
512
        distance_0 = l2(vecs[0], inside_vecs[0])
513
        distance_1 = l2(vecs[0], inside_vecs[1])
514
        res = connect.search(collection, query)
515
        assert abs(np.sqrt(res[0]._distances[0]) - min(distance_0, distance_1)) <= gen_inaccuracy(res[0]._distances[0])
516
517
    # TODO: distance problem
518
    def _test_search_distance_l2_after_index(self, connect, collection, get_simple_index):