1
|
|
|
import pdb |
2
|
|
|
import struct |
3
|
|
|
from random import sample |
4
|
|
|
import threading |
5
|
|
|
import datetime |
6
|
|
|
import logging |
7
|
|
|
from time import sleep |
8
|
|
|
import concurrent.futures |
9
|
|
|
from multiprocessing import Process |
10
|
|
|
import pytest |
11
|
|
|
import numpy |
12
|
|
|
import sklearn.preprocessing |
13
|
|
|
from milvus import IndexType, MetricType |
14
|
|
|
from utils import * |
15
|
|
|
|
16
|
|
|
dim = 128 |
17
|
|
|
collection_id = "test_search" |
18
|
|
|
add_interval_time = 2 |
19
|
|
|
vectors = gen_vectors(6000, dim) |
20
|
|
|
vectors = sklearn.preprocessing.normalize(vectors, axis=1, norm='l2') |
21
|
|
|
vectors = vectors.tolist() |
22
|
|
|
top_k = 1 |
23
|
|
|
nprobe = 1 |
24
|
|
|
epsilon = 0.001 |
25
|
|
|
tag = "1970-01-01" |
26
|
|
|
raw_vectors, binary_vectors = gen_binary_vectors(6000, dim) |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
class TestSearchBase: |
30
|
|
|
def init_data(self, connect, collection, nb=6000, dim=dim, partition_tags=None): |
31
|
|
|
''' |
32
|
|
|
Generate vectors and add it in collection, before search vectors |
33
|
|
|
''' |
34
|
|
|
global vectors |
35
|
|
|
if nb == 6000: |
36
|
|
|
add_vectors = vectors |
37
|
|
|
else: |
38
|
|
|
add_vectors = gen_vectors(nb, dim) |
39
|
|
|
add_vectors = sklearn.preprocessing.normalize(add_vectors, axis=1, norm='l2') |
40
|
|
|
add_vectors = add_vectors.tolist() |
41
|
|
|
if partition_tags is None: |
42
|
|
|
status, ids = connect.insert(collection, add_vectors) |
43
|
|
|
assert status.OK() |
44
|
|
|
else: |
45
|
|
|
status, ids = connect.insert(collection, add_vectors, partition_tag=partition_tags) |
46
|
|
|
assert status.OK() |
47
|
|
|
connect.flush([collection]) |
48
|
|
|
return add_vectors, ids |
49
|
|
|
|
50
|
|
|
def init_binary_data(self, connect, collection, nb=6000, dim=dim, insert=True, partition_tags=None): |
51
|
|
|
''' |
52
|
|
|
Generate vectors and add it in collection, before search vectors |
53
|
|
|
''' |
54
|
|
|
ids = [] |
55
|
|
|
global binary_vectors |
56
|
|
|
global raw_vectors |
57
|
|
|
if nb == 6000: |
58
|
|
|
add_vectors = binary_vectors |
59
|
|
|
add_raw_vectors = raw_vectors |
60
|
|
|
else: |
61
|
|
|
add_raw_vectors, add_vectors = gen_binary_vectors(nb, dim) |
62
|
|
|
if insert is True: |
63
|
|
|
if partition_tags is None: |
64
|
|
|
status, ids = connect.insert(collection, add_vectors) |
65
|
|
|
assert status.OK() |
66
|
|
|
else: |
67
|
|
|
status, ids = connect.insert(collection, add_vectors, partition_tag=partition_tags) |
68
|
|
|
assert status.OK() |
69
|
|
|
connect.flush([collection]) |
70
|
|
|
return add_raw_vectors, add_vectors, ids |
71
|
|
|
|
72
|
|
|
""" |
73
|
|
|
generate valid create_index params |
74
|
|
|
""" |
75
|
|
|
|
76
|
|
|
@pytest.fixture( |
77
|
|
|
scope="function", |
78
|
|
|
params=gen_index() |
79
|
|
|
) |
80
|
|
|
def get_index(self, request, connect): |
81
|
|
|
if str(connect._cmd("mode")[1]) == "CPU": |
82
|
|
|
if request.param["index_type"] == IndexType.IVF_SQ8H: |
83
|
|
|
pytest.skip("sq8h not support in CPU mode") |
84
|
|
|
return request.param |
85
|
|
|
|
86
|
|
|
@pytest.fixture( |
87
|
|
|
scope="function", |
88
|
|
|
params=gen_simple_index() |
89
|
|
|
) |
90
|
|
|
def get_simple_index(self, request, connect): |
91
|
|
|
if str(connect._cmd("mode")[1]) == "CPU": |
92
|
|
|
if request.param["index_type"] == IndexType.IVF_SQ8H: |
93
|
|
|
pytest.skip("sq8h not support in CPU mode") |
94
|
|
|
return request.param |
95
|
|
|
|
96
|
|
View Code Duplication |
@pytest.fixture( |
|
|
|
|
97
|
|
|
scope="function", |
98
|
|
|
params=gen_simple_index() |
99
|
|
|
) |
100
|
|
|
def get_jaccard_index(self, request, connect): |
101
|
|
|
logging.getLogger().info(request.param) |
102
|
|
|
if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT: |
103
|
|
|
return request.param |
104
|
|
|
else: |
105
|
|
|
pytest.skip("Skip index Temporary") |
106
|
|
|
|
107
|
|
View Code Duplication |
@pytest.fixture( |
|
|
|
|
108
|
|
|
scope="function", |
109
|
|
|
params=gen_simple_index() |
110
|
|
|
) |
111
|
|
|
def get_hamming_index(self, request, connect): |
112
|
|
|
logging.getLogger().info(request.param) |
113
|
|
|
if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT: |
114
|
|
|
return request.param |
115
|
|
|
else: |
116
|
|
|
pytest.skip("Skip index Temporary") |
117
|
|
|
|
118
|
|
|
@pytest.fixture( |
119
|
|
|
scope="function", |
120
|
|
|
params=gen_simple_index() |
121
|
|
|
) |
122
|
|
|
def get_structure_index(self, request, connect): |
123
|
|
|
logging.getLogger().info(request.param) |
124
|
|
|
if request.param["index_type"] == IndexType.FLAT: |
125
|
|
|
return request.param |
126
|
|
|
else: |
127
|
|
|
pytest.skip("Skip index Temporary") |
128
|
|
|
|
129
|
|
|
""" |
130
|
|
|
generate top-k params |
131
|
|
|
""" |
132
|
|
|
|
133
|
|
|
@pytest.fixture( |
134
|
|
|
scope="function", |
135
|
|
|
params=[1, 99, 1024, 2049, 16385] |
136
|
|
|
) |
137
|
|
|
def get_top_k(self, request): |
138
|
|
|
yield request.param |
139
|
|
|
|
140
|
|
|
def test_search_top_k_flat_index(self, connect, collection, get_top_k): |
141
|
|
|
''' |
142
|
|
|
target: test basic search fuction, all the search params is corrent, change top-k value |
143
|
|
|
method: search with the given vectors, check the result |
144
|
|
|
expected: search status ok, and the length of the result is top_k |
145
|
|
|
''' |
146
|
|
|
vectors, ids = self.init_data(connect, collection) |
147
|
|
|
query_vec = [vectors[0]] |
148
|
|
|
top_k = get_top_k |
149
|
|
|
status, result = connect.search(collection, top_k, query_vec) |
150
|
|
|
if top_k <= 16384: |
151
|
|
|
assert status.OK() |
152
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
153
|
|
|
assert result[0][0].distance <= epsilon |
154
|
|
|
assert check_result(result[0], ids[0]) |
155
|
|
|
else: |
156
|
|
|
assert not status.OK() |
157
|
|
|
|
158
|
|
|
def test_search_top_k_flat_index_metric_type(self, connect, collection): |
159
|
|
|
''' |
160
|
|
|
target: test basic search fuction, all the search params is corrent, change top-k value |
161
|
|
|
method: search with the given vectors, check the result |
162
|
|
|
expected: search status ok, and the length of the result is top_k |
163
|
|
|
''' |
164
|
|
|
vectors, ids = self.init_data(connect, collection) |
165
|
|
|
query_vec = [vectors[0]] |
166
|
|
|
status, result = connect.search(collection, top_k, query_vec, params={"metric_type": MetricType.IP.value}) |
167
|
|
|
assert status.OK() |
168
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
169
|
|
|
assert result[0][0].distance >= 1 - epsilon |
170
|
|
|
assert check_result(result[0], ids[0]) |
171
|
|
|
|
172
|
|
|
@pytest.mark.level(2) |
173
|
|
|
def test_search_top_k_flat_index_metric_type_invalid(self, connect, collection): |
174
|
|
|
''' |
175
|
|
|
target: test basic search fuction, all the search params is corrent, change top-k value |
176
|
|
|
method: search with the given vectors, check the result |
177
|
|
|
expected: search status ok, and the length of the result is top_k |
178
|
|
|
''' |
179
|
|
|
vectors, ids = self.init_data(connect, collection) |
180
|
|
|
query_vec = [vectors[0]] |
181
|
|
|
status, result = connect.search(collection, top_k, query_vec, params={"metric_type": MetricType.JACCARD.value}) |
182
|
|
|
assert not status.OK() |
183
|
|
|
|
184
|
|
|
def test_search_l2_index_params(self, connect, collection, get_simple_index): |
185
|
|
|
''' |
186
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
187
|
|
|
method: search with the given vectors, check the result |
188
|
|
|
expected: search status ok, and the length of the result is top_k |
189
|
|
|
''' |
190
|
|
|
top_k = 10 |
191
|
|
|
index_param = get_simple_index["index_param"] |
192
|
|
|
index_type = get_simple_index["index_type"] |
193
|
|
|
logging.getLogger().info(get_simple_index) |
194
|
|
|
vectors, ids = self.init_data(connect, collection) |
195
|
|
|
status = connect.create_index(collection, index_type, index_param) |
196
|
|
|
query_vec = [vectors[0], vectors[1]] |
197
|
|
|
search_param = get_search_param(index_type) |
198
|
|
|
status, result = connect.search(collection, top_k, query_vec, params=search_param) |
199
|
|
|
logging.getLogger().info(result) |
200
|
|
|
if top_k <= 1024: |
201
|
|
|
assert status.OK() |
202
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
203
|
|
|
assert check_result(result[0], ids[0]) |
204
|
|
|
assert result[0][0].distance < result[0][1].distance |
205
|
|
|
assert result[1][0].distance < result[1][1].distance |
206
|
|
|
else: |
207
|
|
|
assert not status.OK() |
208
|
|
|
|
209
|
|
|
def test_search_l2_large_nq_index_params(self, connect, collection, get_simple_index): |
210
|
|
|
''' |
211
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
212
|
|
|
method: search with the given vectors, check the result |
213
|
|
|
expected: search status ok, and the length of the result is top_k |
214
|
|
|
''' |
215
|
|
|
top_k = 10 |
216
|
|
|
index_param = get_simple_index["index_param"] |
217
|
|
|
index_type = get_simple_index["index_type"] |
218
|
|
|
logging.getLogger().info(get_simple_index) |
219
|
|
|
if index_type == IndexType.IVF_PQ: |
220
|
|
|
pytest.skip("Skip PQ") |
221
|
|
|
|
222
|
|
|
vectors, ids = self.init_data(connect, collection) |
223
|
|
|
status = connect.create_index(collection, index_type, index_param) |
224
|
|
|
query_vec = vectors[:1000] |
225
|
|
|
search_param = get_search_param(index_type) |
226
|
|
|
status, result = connect.search(collection, top_k, query_vec, params=search_param) |
227
|
|
|
logging.getLogger().info(result) |
228
|
|
|
assert status.OK() |
229
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
230
|
|
|
assert check_result(result[0], ids[0]) |
231
|
|
|
assert result[0][0].distance <= epsilon |
232
|
|
|
|
233
|
|
|
def test_search_with_multi_partitions(self, connect, collection): |
234
|
|
|
''' |
235
|
|
|
target: test search with multi partition which contains default tag and other tags |
236
|
|
|
method: insert vectors into e partition and search with partitions [_default, tag] |
237
|
|
|
expected: search result is correct |
238
|
|
|
''' |
239
|
|
|
connect.create_partition(collection, tag) |
240
|
|
|
vectors, ids = self.init_data(connect, collection, nb=10, partition_tags=tag) |
241
|
|
|
query_vec = [vectors[0]] |
242
|
|
|
search_param = get_search_param(IndexType.FLAT) |
243
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=["_default", tag], |
244
|
|
|
params=search_param) |
245
|
|
|
assert status.OK() |
246
|
|
|
logging.getLogger().info(result) |
247
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
248
|
|
|
assert check_result(result[0], ids[0]) |
249
|
|
|
assert result[0][0].distance <= epsilon |
250
|
|
|
|
251
|
|
|
def test_search_l2_index_params_partition(self, connect, collection, get_simple_index): |
252
|
|
|
''' |
253
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
254
|
|
|
method: add vectors into collection, search with the given vectors, check the result |
255
|
|
|
expected: search status ok, and the length of the result is top_k, search collection with partition tag return empty |
256
|
|
|
''' |
257
|
|
|
top_k = 10 |
258
|
|
|
index_param = get_simple_index["index_param"] |
259
|
|
|
index_type = get_simple_index["index_type"] |
260
|
|
|
logging.getLogger().info(get_simple_index) |
261
|
|
|
if index_type == IndexType.IVF_PQ: |
262
|
|
|
pytest.skip("Skip PQ") |
263
|
|
|
status = connect.create_partition(collection, tag) |
264
|
|
|
vectors, ids = self.init_data(connect, collection) |
265
|
|
|
status = connect.create_index(collection, index_type, index_param) |
266
|
|
|
query_vec = [vectors[0]] |
267
|
|
|
search_param = get_search_param(index_type) |
268
|
|
|
status, result = connect.search(collection, top_k, query_vec, params=search_param) |
269
|
|
|
logging.getLogger().info(result) |
270
|
|
|
assert status.OK() |
271
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
272
|
|
|
assert check_result(result[0], ids[0]) |
273
|
|
|
assert result[0][0].distance <= epsilon |
274
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=[tag], params=search_param) |
275
|
|
|
logging.getLogger().info(result) |
276
|
|
|
assert status.OK() |
277
|
|
|
assert len(result) == 0 |
278
|
|
|
|
279
|
|
|
def test_search_l2_index_params_partition_A(self, connect, collection, get_simple_index): |
280
|
|
|
''' |
281
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
282
|
|
|
method: search partition with the given vectors, check the result |
283
|
|
|
expected: search status ok, and the length of the result is 0 |
284
|
|
|
''' |
285
|
|
|
top_k = 10 |
286
|
|
|
index_param = get_simple_index["index_param"] |
287
|
|
|
index_type = get_simple_index["index_type"] |
288
|
|
|
logging.getLogger().info(get_simple_index) |
289
|
|
|
if index_type == IndexType.IVF_PQ: |
290
|
|
|
pytest.skip("Skip PQ") |
291
|
|
|
|
292
|
|
|
status = connect.create_partition(collection, tag) |
293
|
|
|
vectors, ids = self.init_data(connect, collection) |
294
|
|
|
status = connect.create_index(collection, index_type, index_param) |
295
|
|
|
query_vec = [vectors[0]] |
296
|
|
|
search_param = get_search_param(index_type) |
297
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=[tag], params=search_param) |
298
|
|
|
logging.getLogger().info(result) |
299
|
|
|
assert status.OK() |
300
|
|
|
assert len(result) == 0 |
301
|
|
|
|
302
|
|
|
def test_search_l2_index_params_partition_B(self, connect, collection, get_simple_index): |
303
|
|
|
''' |
304
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
305
|
|
|
method: search with the given vectors, check the result |
306
|
|
|
expected: search status ok, and the length of the result is top_k |
307
|
|
|
''' |
308
|
|
|
top_k = 10 |
309
|
|
|
index_param = get_simple_index["index_param"] |
310
|
|
|
index_type = get_simple_index["index_type"] |
311
|
|
|
logging.getLogger().info(get_simple_index) |
312
|
|
|
if index_type == IndexType.IVF_PQ: |
313
|
|
|
pytest.skip("Skip PQ") |
314
|
|
|
status = connect.create_partition(collection, tag) |
315
|
|
|
vectors, ids = self.init_data(connect, collection, partition_tags=tag) |
316
|
|
|
status = connect.create_index(collection, index_type, index_param) |
317
|
|
|
query_vec = [vectors[0]] |
318
|
|
|
search_param = get_search_param(index_type) |
319
|
|
|
status, result = connect.search(collection, top_k, query_vec, params=search_param) |
320
|
|
|
logging.getLogger().info(result) |
321
|
|
|
assert status.OK() |
322
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
323
|
|
|
assert check_result(result[0], ids[0]) |
324
|
|
|
assert result[0][0].distance <= epsilon |
325
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=[tag], params=search_param) |
326
|
|
|
logging.getLogger().info(result) |
327
|
|
|
assert status.OK() |
328
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
329
|
|
|
assert check_result(result[0], ids[0]) |
330
|
|
|
assert result[0][0].distance <= epsilon |
331
|
|
|
|
332
|
|
|
def test_search_l2_index_params_partition_C(self, connect, collection, get_simple_index): |
333
|
|
|
''' |
334
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
335
|
|
|
method: search with the given vectors and tags (one of the tags not existed in collection), check the result |
336
|
|
|
expected: search status ok, and the length of the result is top_k |
337
|
|
|
''' |
338
|
|
|
index_param = get_simple_index["index_param"] |
339
|
|
|
index_type = get_simple_index["index_type"] |
340
|
|
|
logging.getLogger().info(get_simple_index) |
341
|
|
|
if index_type == IndexType.IVF_PQ: |
342
|
|
|
pytest.skip("Skip PQ") |
343
|
|
|
status = connect.create_partition(collection, tag) |
344
|
|
|
vectors, ids = self.init_data(connect, collection, partition_tags=tag) |
345
|
|
|
status = connect.create_index(collection, index_type, index_param) |
346
|
|
|
query_vec = [vectors[0]] |
347
|
|
|
top_k = 10 |
348
|
|
|
search_param = get_search_param(index_type) |
349
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=[tag, "new_tag"], |
350
|
|
|
params=search_param) |
351
|
|
|
logging.getLogger().info(result) |
352
|
|
|
assert status.OK() |
353
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
354
|
|
|
assert check_result(result[0], ids[0]) |
355
|
|
|
assert result[0][0].distance <= epsilon |
356
|
|
|
|
357
|
|
|
@pytest.mark.level(2) |
358
|
|
|
def test_search_l2_index_params_partition_D(self, connect, collection, get_simple_index): |
359
|
|
|
''' |
360
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
361
|
|
|
method: search with the given vectors and tag (tag name not existed in collection), check the result |
362
|
|
|
expected: search status ok, and the length of the result is top_k |
363
|
|
|
''' |
364
|
|
|
index_param = get_simple_index["index_param"] |
365
|
|
|
index_type = get_simple_index["index_type"] |
366
|
|
|
logging.getLogger().info(get_simple_index) |
367
|
|
|
status = connect.create_partition(collection, tag) |
368
|
|
|
vectors, ids = self.init_data(connect, collection, partition_tags=tag) |
369
|
|
|
status = connect.create_index(collection, index_type, index_param) |
370
|
|
|
query_vec = [vectors[0]] |
371
|
|
|
top_k = 10 |
372
|
|
|
search_param = get_search_param(index_type) |
373
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=["new_tag"], params=search_param) |
374
|
|
|
logging.getLogger().info(result) |
375
|
|
|
assert not status.OK() |
376
|
|
|
|
377
|
|
|
@pytest.mark.level(2) |
378
|
|
|
def test_search_l2_index_params_partition_E(self, connect, collection, get_simple_index): |
379
|
|
|
''' |
380
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
381
|
|
|
method: search collection with the given vectors and tags, check the result |
382
|
|
|
expected: search status ok, and the length of the result is top_k |
383
|
|
|
''' |
384
|
|
|
top_k = 10 |
385
|
|
|
new_tag = "new_tag" |
386
|
|
|
index_type = get_simple_index["index_type"] |
387
|
|
|
index_param = get_simple_index["index_param"] |
388
|
|
|
if index_type == IndexType.IVF_PQ: |
389
|
|
|
pytest.skip("Skip PQ") |
390
|
|
|
logging.getLogger().info(get_simple_index) |
391
|
|
|
status = connect.create_partition(collection, tag) |
392
|
|
|
status = connect.create_partition(collection, new_tag) |
393
|
|
|
vectors, ids = self.init_data(connect, collection, partition_tags=tag) |
394
|
|
|
new_vectors, new_ids = self.init_data(connect, collection, nb=6001, partition_tags=new_tag) |
395
|
|
|
status = connect.create_index(collection, index_type, index_param) |
396
|
|
|
query_vec = [vectors[0], new_vectors[0]] |
397
|
|
|
search_param = get_search_param(index_type) |
398
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=[tag, new_tag], |
399
|
|
|
params=search_param) |
400
|
|
|
logging.getLogger().info(result) |
401
|
|
|
assert status.OK() |
402
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
403
|
|
|
assert check_result(result[0], ids[0]) |
404
|
|
|
assert check_result(result[1], new_ids[0]) |
405
|
|
|
assert result[0][0].distance <= epsilon |
406
|
|
|
assert result[1][0].distance <= epsilon |
407
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=[new_tag], params=search_param) |
408
|
|
|
logging.getLogger().info(result) |
409
|
|
|
assert status.OK() |
410
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
411
|
|
|
assert check_result(result[1], new_ids[0]) |
412
|
|
|
assert result[1][0].distance <= epsilon |
413
|
|
|
|
414
|
|
|
def test_search_l2_index_params_partition_F(self, connect, collection, get_simple_index): |
415
|
|
|
''' |
416
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
417
|
|
|
method: search collection with the given vectors and tags with "re" expr, check the result |
418
|
|
|
expected: search status ok, and the length of the result is top_k |
419
|
|
|
''' |
420
|
|
|
tag = "atag" |
421
|
|
|
new_tag = "new_tag" |
422
|
|
|
index_param = get_simple_index["index_param"] |
423
|
|
|
index_type = get_simple_index["index_type"] |
424
|
|
|
logging.getLogger().info(get_simple_index) |
425
|
|
|
if index_type == IndexType.IVF_PQ: |
426
|
|
|
pytest.skip("Skip PQ") |
427
|
|
|
status = connect.create_partition(collection, tag) |
428
|
|
|
status = connect.create_partition(collection, new_tag) |
429
|
|
|
vectors, ids = self.init_data(connect, collection, partition_tags=tag) |
430
|
|
|
new_vectors, new_ids = self.init_data(connect, collection, nb=6001, partition_tags=new_tag) |
431
|
|
|
status = connect.create_index(collection, index_type, index_param) |
432
|
|
|
query_vec = [vectors[0], new_vectors[0]] |
433
|
|
|
top_k = 10 |
434
|
|
|
search_param = get_search_param(index_type) |
435
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=["new(.*)"], params=search_param) |
436
|
|
|
logging.getLogger().info(result) |
437
|
|
|
assert status.OK() |
438
|
|
|
assert result[0][0].distance > epsilon |
439
|
|
|
assert result[1][0].distance <= epsilon |
440
|
|
|
status, result = connect.search(collection, top_k, query_vec, partition_tags=["(.*)tag"], params=search_param) |
441
|
|
|
logging.getLogger().info(result) |
442
|
|
|
assert status.OK() |
443
|
|
|
assert result[0][0].distance <= epsilon |
444
|
|
|
assert result[1][0].distance <= epsilon |
445
|
|
|
|
446
|
|
|
@pytest.mark.level(2) |
447
|
|
|
def test_search_ip_index_params(self, connect, ip_collection, get_simple_index): |
448
|
|
|
''' |
449
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
450
|
|
|
method: search with the given vectors, check the result |
451
|
|
|
expected: search status ok, and the length of the result is top_k |
452
|
|
|
''' |
453
|
|
|
top_k = 10 |
454
|
|
|
index_param = get_simple_index["index_param"] |
455
|
|
|
index_type = get_simple_index["index_type"] |
456
|
|
|
logging.getLogger().info(get_simple_index) |
457
|
|
|
vectors, ids = self.init_data(connect, ip_collection) |
458
|
|
|
status = connect.create_index(ip_collection, index_type, index_param) |
459
|
|
|
query_vec = [vectors[0]] |
460
|
|
|
search_param = get_search_param(index_type) |
461
|
|
|
status, result = connect.search(ip_collection, top_k, query_vec, params=search_param) |
462
|
|
|
logging.getLogger().info(result) |
463
|
|
|
assert status.OK() |
464
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
465
|
|
|
assert check_result(result[0], ids[0]) |
466
|
|
|
assert result[0][0].distance >= result[0][1].distance |
467
|
|
|
|
468
|
|
|
def test_search_ip_large_nq_index_params(self, connect, ip_collection, get_simple_index): |
469
|
|
|
''' |
470
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
471
|
|
|
method: search with the given vectors, check the result |
472
|
|
|
expected: search status ok, and the length of the result is top_k |
473
|
|
|
''' |
474
|
|
|
index_param = get_simple_index["index_param"] |
475
|
|
|
index_type = get_simple_index["index_type"] |
476
|
|
|
logging.getLogger().info(get_simple_index) |
477
|
|
|
if index_type in [IndexType.RNSG, IndexType.IVF_PQ]: |
478
|
|
|
pytest.skip("rnsg not support in ip, skip pq") |
479
|
|
|
vectors, ids = self.init_data(connect, ip_collection) |
480
|
|
|
status = connect.create_index(ip_collection, index_type, index_param) |
481
|
|
|
query_vec = [] |
482
|
|
|
for i in range(1200): |
483
|
|
|
query_vec.append(vectors[i]) |
484
|
|
|
top_k = 10 |
485
|
|
|
search_param = get_search_param(index_type) |
486
|
|
|
status, result = connect.search(ip_collection, top_k, query_vec, params=search_param) |
487
|
|
|
logging.getLogger().info(result) |
488
|
|
|
assert status.OK() |
489
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
490
|
|
|
assert check_result(result[0], ids[0]) |
491
|
|
|
assert result[0][0].distance >= 1 - gen_inaccuracy(result[0][0].distance) |
492
|
|
|
|
493
|
|
|
@pytest.mark.level(2) |
494
|
|
|
def test_search_ip_index_params_partition(self, connect, ip_collection, get_simple_index): |
495
|
|
|
''' |
496
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
497
|
|
|
method: search with the given vectors, check the result |
498
|
|
|
expected: search status ok, and the length of the result is top_k |
499
|
|
|
''' |
500
|
|
|
top_k = 10 |
501
|
|
|
index_param = get_simple_index["index_param"] |
502
|
|
|
index_type = get_simple_index["index_type"] |
503
|
|
|
logging.getLogger().info(index_param) |
504
|
|
|
if index_type in [IndexType.RNSG, IndexType.IVF_PQ]: |
505
|
|
|
pytest.skip("rnsg not support in ip, skip pq") |
506
|
|
|
|
507
|
|
|
status = connect.create_partition(ip_collection, tag) |
508
|
|
|
vectors, ids = self.init_data(connect, ip_collection) |
509
|
|
|
status = connect.create_index(ip_collection, index_type, index_param) |
510
|
|
|
query_vec = [vectors[0]] |
511
|
|
|
search_param = get_search_param(index_type) |
512
|
|
|
status, result = connect.search(ip_collection, top_k, query_vec, params=search_param) |
513
|
|
|
logging.getLogger().info(result) |
514
|
|
|
assert status.OK() |
515
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
516
|
|
|
assert check_result(result[0], ids[0]) |
517
|
|
|
assert result[0][0].distance >= 1 - gen_inaccuracy(result[0][0].distance) |
518
|
|
|
status, result = connect.search(ip_collection, top_k, query_vec, partition_tags=[tag], params=search_param) |
519
|
|
|
logging.getLogger().info(result) |
520
|
|
|
assert status.OK() |
521
|
|
|
assert len(result) == 0 |
522
|
|
|
|
523
|
|
|
@pytest.mark.level(2) |
524
|
|
|
def test_search_ip_index_params_partition_A(self, connect, ip_collection, get_simple_index): |
525
|
|
|
''' |
526
|
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build |
527
|
|
|
method: search with the given vectors and tag, check the result |
528
|
|
|
expected: search status ok, and the length of the result is top_k |
529
|
|
|
''' |
530
|
|
|
top_k = 10 |
531
|
|
|
index_param = get_simple_index["index_param"] |
532
|
|
|
index_type = get_simple_index["index_type"] |
533
|
|
|
logging.getLogger().info(index_param) |
534
|
|
|
if index_type in [IndexType.RNSG, IndexType.IVF_PQ]: |
535
|
|
|
pytest.skip("rnsg not support in ip, skip pq") |
536
|
|
|
|
537
|
|
|
status = connect.create_partition(ip_collection, tag) |
538
|
|
|
vectors, ids = self.init_data(connect, ip_collection, partition_tags=tag) |
539
|
|
|
status = connect.create_index(ip_collection, index_type, index_param) |
540
|
|
|
query_vec = [vectors[0]] |
541
|
|
|
search_param = get_search_param(index_type) |
542
|
|
|
status, result = connect.search(ip_collection, top_k, query_vec, partition_tags=[tag], params=search_param) |
543
|
|
|
logging.getLogger().info(result) |
544
|
|
|
assert status.OK() |
545
|
|
|
assert len(result[0]) == min(len(vectors), top_k) |
546
|
|
|
assert check_result(result[0], ids[0]) |
547
|
|
|
assert result[0][0].distance >= 1 - gen_inaccuracy(result[0][0].distance) |
548
|
|
|
|
549
|
|
|
@pytest.mark.level(2) |
550
|
|
|
def test_search_vectors_without_connect(self, dis_connect, collection): |
551
|
|
|
''' |
552
|
|
|
target: test search vectors without connection |
553
|
|
|
method: use dis connected instance, call search method and check if search successfully |
554
|
|
|
expected: raise exception |
555
|
|
|
''' |
556
|
|
|
query_vectors = [vectors[0]] |
557
|
|
|
nprobe = 1 |
558
|
|
|
with pytest.raises(Exception) as e: |
559
|
|
|
status, ids = dis_connect.search(collection, top_k, query_vectors) |
560
|
|
|
|
561
|
|
|
def test_search_collection_name_not_existed(self, connect, collection): |
562
|
|
|
''' |
563
|
|
|
target: search collection not existed |
564
|
|
|
method: search with the random collection_name, which is not in db |
565
|
|
|
expected: status not ok |
566
|
|
|
''' |
567
|
|
|
collection_name = gen_unique_str("not_existed_collection") |
568
|
|
|
nprobe = 1 |
569
|
|
|
query_vecs = [vectors[0]] |
570
|
|
|
status, result = connect.search(collection_name, top_k, query_vecs) |
571
|
|
|
assert not status.OK() |
572
|
|
|
|
573
|
|
|
def test_search_collection_name_None(self, connect, collection): |
574
|
|
|
''' |
575
|
|
|
target: search collection that collection name is None |
576
|
|
|
method: search with the collection_name: None |
577
|
|
|
expected: status not ok |
578
|
|
|
''' |
579
|
|
|
collection_name = None |
580
|
|
|
nprobe = 1 |
581
|
|
|
query_vecs = [vectors[0]] |
582
|
|
|
with pytest.raises(Exception) as e: |
583
|
|
|
status, result = connect.search(collection_name, top_k, query_vecs) |
584
|
|
|
|
585
|
|
|
def test_search_top_k_query_records(self, connect, collection): |
586
|
|
|
''' |
587
|
|
|
target: test search fuction, with search params: query_records |
588
|
|
|
method: search with the given query_records, which are subarrays of the inserted vectors |
589
|
|
|
expected: status ok and the returned vectors should be query_records |
590
|
|
|
''' |
591
|
|
|
top_k = 10 |
592
|
|
|
vectors, ids = self.init_data(connect, collection) |
593
|
|
|
query_vecs = [vectors[0], vectors[55], vectors[99]] |
594
|
|
|
status, result = connect.search(collection, top_k, query_vecs) |
595
|
|
|
assert status.OK() |
596
|
|
|
assert len(result) == len(query_vecs) |
597
|
|
|
for i in range(len(query_vecs)): |
598
|
|
|
assert len(result[i]) == top_k |
599
|
|
|
assert result[i][0].distance <= epsilon |
600
|
|
|
|
601
|
|
|
def test_search_distance_l2_flat_index(self, connect, collection): |
602
|
|
|
''' |
603
|
|
|
target: search collection, and check the result: distance |
604
|
|
|
method: compare the return distance value with value computed with Euclidean |
605
|
|
|
expected: the return distance equals to the computed value |
606
|
|
|
''' |
607
|
|
|
nb = 2 |
608
|
|
|
vectors, ids = self.init_data(connect, collection, nb=nb) |
609
|
|
|
query_vecs = [[0.50 for i in range(dim)]] |
610
|
|
|
distance_0 = numpy.linalg.norm(numpy.array(query_vecs[0]) - numpy.array(vectors[0])) |
611
|
|
|
distance_1 = numpy.linalg.norm(numpy.array(query_vecs[0]) - numpy.array(vectors[1])) |
612
|
|
|
status, result = connect.search(collection, top_k, query_vecs) |
613
|
|
|
assert abs(numpy.sqrt(result[0][0].distance) - min(distance_0, distance_1)) <= gen_inaccuracy( |
614
|
|
|
result[0][0].distance) |
615
|
|
|
|
616
|
|
|
def test_search_distance_ip_flat_index(self, connect, ip_collection): |
617
|
|
|
''' |
618
|
|
|
target: search ip_collection, and check the result: distance |
619
|
|
|
method: compare the return distance value with value computed with Inner product |
620
|
|
|
expected: the return distance equals to the computed value |
621
|
|
|
''' |
622
|
|
|
nb = 2 |
623
|
|
|
nprobe = 1 |
624
|
|
|
vectors, ids = self.init_data(connect, ip_collection, nb=nb) |
625
|
|
|
index_type = IndexType.FLAT |
626
|
|
|
index_param = { |
627
|
|
|
"nlist": 16384 |
628
|
|
|
} |
629
|
|
|
connect.create_index(ip_collection, index_type, index_param) |
630
|
|
|
logging.getLogger().info(connect.get_index_info(ip_collection)) |
631
|
|
|
query_vecs = [[0.50 for i in range(dim)]] |
632
|
|
|
distance_0 = numpy.inner(numpy.array(query_vecs[0]), numpy.array(vectors[0])) |
633
|
|
|
distance_1 = numpy.inner(numpy.array(query_vecs[0]), numpy.array(vectors[1])) |
634
|
|
|
search_param = get_search_param(index_type) |
635
|
|
|
status, result = connect.search(ip_collection, top_k, query_vecs, params=search_param) |
636
|
|
|
assert abs(result[0][0].distance - max(distance_0, distance_1)) <= gen_inaccuracy(result[0][0].distance) |
637
|
|
|
|
638
|
|
View Code Duplication |
def test_search_distance_jaccard_flat_index(self, connect, jac_collection): |
|
|
|
|
639
|
|
|
''' |
640
|
|
|
target: search ip_collection, and check the result: distance |
641
|
|
|
method: compare the return distance value with value computed with Inner product |
642
|
|
|
expected: the return distance equals to the computed value |
643
|
|
|
''' |
644
|
|
|
# from scipy.spatial import distance |
645
|
|
|
nprobe = 512 |
646
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, jac_collection, nb=2) |
647
|
|
|
index_type = IndexType.FLAT |
648
|
|
|
index_param = { |
649
|
|
|
"nlist": 16384 |
650
|
|
|
} |
651
|
|
|
connect.create_index(jac_collection, index_type, index_param) |
652
|
|
|
logging.getLogger().info(connect.get_collection_info(jac_collection)) |
653
|
|
|
logging.getLogger().info(connect.get_index_info(jac_collection)) |
654
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, jac_collection, nb=1, insert=False) |
655
|
|
|
distance_0 = jaccard(query_int_vectors[0], int_vectors[0]) |
656
|
|
|
distance_1 = jaccard(query_int_vectors[0], int_vectors[1]) |
657
|
|
|
search_param = get_search_param(index_type) |
658
|
|
|
status, result = connect.search(jac_collection, top_k, query_vecs, params=search_param) |
659
|
|
|
logging.getLogger().info(status) |
660
|
|
|
logging.getLogger().info(result) |
661
|
|
|
assert abs(result[0][0].distance - min(distance_0, distance_1)) <= epsilon |
662
|
|
|
|
663
|
|
|
def test_search_distance_jaccard_flat_index_metric_type(self, connect, jac_collection): |
664
|
|
|
''' |
665
|
|
|
target: search ip_collection, and check the result: distance |
666
|
|
|
method: compare the return distance value with value computed with HAMMING |
667
|
|
|
expected: the return distance equals to the computed value |
668
|
|
|
''' |
669
|
|
|
# from scipy.spatial import distance |
670
|
|
|
nprobe = 512 |
671
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, jac_collection, nb=2) |
672
|
|
|
index_type = IndexType.FLAT |
673
|
|
|
index_param = { |
674
|
|
|
"nlist": 16384 |
675
|
|
|
} |
676
|
|
|
connect.create_index(jac_collection, index_type, index_param) |
677
|
|
|
logging.getLogger().info(connect.get_collection_info(jac_collection)) |
678
|
|
|
logging.getLogger().info(connect.get_index_info(jac_collection)) |
679
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, jac_collection, nb=1, insert=False) |
680
|
|
|
distance_0 = hamming(query_int_vectors[0], int_vectors[0]) |
681
|
|
|
distance_1 = hamming(query_int_vectors[0], int_vectors[1]) |
682
|
|
|
search_param = get_search_param(index_type) |
683
|
|
|
search_param.update({"metric_type": MetricType.HAMMING.value}) |
684
|
|
|
status, result = connect.search(jac_collection, top_k, query_vecs, params=search_param) |
685
|
|
|
assert status.OK() |
686
|
|
|
logging.getLogger().info(status) |
687
|
|
|
logging.getLogger().info(result) |
688
|
|
|
assert abs(result[0][0].distance - min(distance_0, distance_1).astype(float)) <= epsilon |
689
|
|
|
|
690
|
|
View Code Duplication |
def test_search_distance_hamming_flat_index(self, connect, ham_collection): |
|
|
|
|
691
|
|
|
''' |
692
|
|
|
target: search ip_collection, and check the result: distance |
693
|
|
|
method: compare the return distance value with value computed with Inner product |
694
|
|
|
expected: the return distance equals to the computed value |
695
|
|
|
''' |
696
|
|
|
# from scipy.spatial import distance |
697
|
|
|
nprobe = 512 |
698
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, ham_collection, nb=2) |
699
|
|
|
index_type = IndexType.FLAT |
700
|
|
|
index_param = { |
701
|
|
|
"nlist": 16384 |
702
|
|
|
} |
703
|
|
|
connect.create_index(ham_collection, index_type, index_param) |
704
|
|
|
logging.getLogger().info(connect.get_collection_info(ham_collection)) |
705
|
|
|
logging.getLogger().info(connect.get_index_info(ham_collection)) |
706
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, ham_collection, nb=1, insert=False) |
707
|
|
|
distance_0 = hamming(query_int_vectors[0], int_vectors[0]) |
708
|
|
|
distance_1 = hamming(query_int_vectors[0], int_vectors[1]) |
709
|
|
|
search_param = get_search_param(index_type) |
710
|
|
|
status, result = connect.search(ham_collection, top_k, query_vecs, params=search_param) |
711
|
|
|
logging.getLogger().info(status) |
712
|
|
|
logging.getLogger().info(result) |
713
|
|
|
assert abs(result[0][0].distance - min(distance_0, distance_1).astype(float)) <= epsilon |
714
|
|
|
|
715
|
|
|
def test_search_distance_substructure_flat_index(self, connect, substructure_collection): |
716
|
|
|
''' |
717
|
|
|
target: search ip_collection, and check the result: distance |
718
|
|
|
method: compare the return distance value with value computed with Inner product |
719
|
|
|
expected: the return distance equals to the computed value |
720
|
|
|
''' |
721
|
|
|
# from scipy.spatial import distance |
722
|
|
|
nprobe = 512 |
723
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, substructure_collection, nb=2) |
724
|
|
|
index_type = IndexType.FLAT |
725
|
|
|
index_param = { |
726
|
|
|
"nlist": 16384 |
727
|
|
|
} |
728
|
|
|
connect.create_index(substructure_collection, index_type, index_param) |
729
|
|
|
logging.getLogger().info(connect.get_collection_info(substructure_collection)) |
730
|
|
|
logging.getLogger().info(connect.get_index_info(substructure_collection)) |
731
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, substructure_collection, nb=1, |
732
|
|
|
insert=False) |
733
|
|
|
distance_0 = substructure(query_int_vectors[0], int_vectors[0]) |
734
|
|
|
distance_1 = substructure(query_int_vectors[0], int_vectors[1]) |
735
|
|
|
search_param = get_search_param(index_type) |
736
|
|
|
status, result = connect.search(substructure_collection, top_k, query_vecs, params=search_param) |
737
|
|
|
logging.getLogger().info(status) |
738
|
|
|
logging.getLogger().info(result) |
739
|
|
|
assert len(result[0]) == 0 |
740
|
|
|
|
741
|
|
View Code Duplication |
def test_search_distance_substructure_flat_index_B(self, connect, substructure_collection): |
|
|
|
|
742
|
|
|
''' |
743
|
|
|
target: search ip_collection, and check the result: distance |
744
|
|
|
method: compare the return distance value with value computed with SUB |
745
|
|
|
expected: the return distance equals to the computed value |
746
|
|
|
''' |
747
|
|
|
# from scipy.spatial import distance |
748
|
|
|
top_k = 3 |
749
|
|
|
nprobe = 512 |
750
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, substructure_collection, nb=2) |
751
|
|
|
index_type = IndexType.FLAT |
752
|
|
|
index_param = { |
753
|
|
|
"nlist": 16384 |
754
|
|
|
} |
755
|
|
|
connect.create_index(substructure_collection, index_type, index_param) |
756
|
|
|
logging.getLogger().info(connect.get_collection_info(substructure_collection)) |
757
|
|
|
logging.getLogger().info(connect.get_index_info(substructure_collection)) |
758
|
|
|
query_int_vectors, query_vecs = gen_binary_sub_vectors(int_vectors, 2) |
759
|
|
|
search_param = get_search_param(index_type) |
760
|
|
|
status, result = connect.search(substructure_collection, top_k, query_vecs, params=search_param) |
761
|
|
|
logging.getLogger().info(status) |
762
|
|
|
logging.getLogger().info(result) |
763
|
|
|
assert len(result[0]) == 1 |
764
|
|
|
assert len(result[1]) == 1 |
765
|
|
|
assert result[0][0].distance <= epsilon |
766
|
|
|
assert result[0][0].id == ids[0] |
767
|
|
|
assert result[1][0].distance <= epsilon |
768
|
|
|
assert result[1][0].id == ids[1] |
769
|
|
|
|
770
|
|
|
def test_search_distance_superstructure_flat_index(self, connect, superstructure_collection): |
771
|
|
|
''' |
772
|
|
|
target: search ip_collection, and check the result: distance |
773
|
|
|
method: compare the return distance value with value computed with Inner product |
774
|
|
|
expected: the return distance equals to the computed value |
775
|
|
|
''' |
776
|
|
|
# from scipy.spatial import distance |
777
|
|
|
nprobe = 512 |
778
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, superstructure_collection, nb=2) |
779
|
|
|
index_type = IndexType.FLAT |
780
|
|
|
index_param = { |
781
|
|
|
"nlist": 16384 |
782
|
|
|
} |
783
|
|
|
connect.create_index(superstructure_collection, index_type, index_param) |
784
|
|
|
logging.getLogger().info(connect.get_collection_info(superstructure_collection)) |
785
|
|
|
logging.getLogger().info(connect.get_index_info(superstructure_collection)) |
786
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, superstructure_collection, nb=1, |
787
|
|
|
insert=False) |
788
|
|
|
distance_0 = superstructure(query_int_vectors[0], int_vectors[0]) |
789
|
|
|
distance_1 = superstructure(query_int_vectors[0], int_vectors[1]) |
790
|
|
|
search_param = get_search_param(index_type) |
791
|
|
|
status, result = connect.search(superstructure_collection, top_k, query_vecs, params=search_param) |
792
|
|
|
logging.getLogger().info(status) |
793
|
|
|
logging.getLogger().info(result) |
794
|
|
|
assert len(result[0]) == 0 |
795
|
|
|
|
796
|
|
View Code Duplication |
def test_search_distance_superstructure_flat_index_B(self, connect, superstructure_collection): |
|
|
|
|
797
|
|
|
''' |
798
|
|
|
target: search ip_collection, and check the result: distance |
799
|
|
|
method: compare the return distance value with value computed with SUPER |
800
|
|
|
expected: the return distance equals to the computed value |
801
|
|
|
''' |
802
|
|
|
# from scipy.spatial import distance |
803
|
|
|
top_k = 3 |
804
|
|
|
nprobe = 512 |
805
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, superstructure_collection, nb=2) |
806
|
|
|
index_type = IndexType.FLAT |
807
|
|
|
index_param = { |
808
|
|
|
"nlist": 16384 |
809
|
|
|
} |
810
|
|
|
connect.create_index(superstructure_collection, index_type, index_param) |
811
|
|
|
logging.getLogger().info(connect.get_collection_info(superstructure_collection)) |
812
|
|
|
logging.getLogger().info(connect.get_index_info(superstructure_collection)) |
813
|
|
|
query_int_vectors, query_vecs = gen_binary_super_vectors(int_vectors, 2) |
814
|
|
|
search_param = get_search_param(index_type) |
815
|
|
|
status, result = connect.search(superstructure_collection, top_k, query_vecs, params=search_param) |
816
|
|
|
logging.getLogger().info(status) |
817
|
|
|
logging.getLogger().info(result) |
818
|
|
|
assert len(result[0]) == 2 |
819
|
|
|
assert len(result[1]) == 2 |
820
|
|
|
assert result[0][0].id in ids |
821
|
|
|
assert result[0][0].distance <= epsilon |
822
|
|
|
assert result[1][0].id in ids |
823
|
|
|
assert result[1][0].distance <= epsilon |
824
|
|
|
|
825
|
|
View Code Duplication |
def test_search_distance_tanimoto_flat_index(self, connect, tanimoto_collection): |
|
|
|
|
826
|
|
|
''' |
827
|
|
|
target: search ip_collection, and check the result: distance |
828
|
|
|
method: compare the return distance value with value computed with Inner product |
829
|
|
|
expected: the return distance equals to the computed value |
830
|
|
|
''' |
831
|
|
|
# from scipy.spatial import distance |
832
|
|
|
nprobe = 512 |
833
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, tanimoto_collection, nb=2) |
834
|
|
|
index_type = IndexType.FLAT |
835
|
|
|
index_param = { |
836
|
|
|
"nlist": 16384 |
837
|
|
|
} |
838
|
|
|
connect.create_index(tanimoto_collection, index_type, index_param) |
839
|
|
|
logging.getLogger().info(connect.get_collection_info(tanimoto_collection)) |
840
|
|
|
logging.getLogger().info(connect.get_index_info(tanimoto_collection)) |
841
|
|
|
query_int_vectors, query_vecs, tmp_ids = self.init_binary_data(connect, tanimoto_collection, nb=1, insert=False) |
842
|
|
|
distance_0 = tanimoto(query_int_vectors[0], int_vectors[0]) |
843
|
|
|
distance_1 = tanimoto(query_int_vectors[0], int_vectors[1]) |
844
|
|
|
search_param = get_search_param(index_type) |
845
|
|
|
status, result = connect.search(tanimoto_collection, top_k, query_vecs, params=search_param) |
846
|
|
|
logging.getLogger().info(status) |
847
|
|
|
logging.getLogger().info(result) |
848
|
|
|
assert abs(result[0][0].distance - min(distance_0, distance_1)) <= epsilon |
849
|
|
|
|
850
|
|
|
def test_search_distance_ip_index_params(self, connect, ip_collection, get_index): |
851
|
|
|
''' |
852
|
|
|
target: search collection, and check the result: distance |
853
|
|
|
method: compare the return distance value with value computed with Inner product |
854
|
|
|
expected: the return distance equals to the computed value |
855
|
|
|
''' |
856
|
|
|
top_k = 2 |
857
|
|
|
nprobe = 1 |
858
|
|
|
index_param = get_index["index_param"] |
859
|
|
|
index_type = get_index["index_type"] |
860
|
|
|
if index_type == IndexType.RNSG: |
861
|
|
|
pytest.skip("rnsg not support in ip") |
862
|
|
|
vectors, ids = self.init_data(connect, ip_collection, nb=2) |
863
|
|
|
connect.create_index(ip_collection, index_type, index_param) |
864
|
|
|
logging.getLogger().info(connect.get_index_info(ip_collection)) |
865
|
|
|
query_vecs = [[0.50 for i in range(dim)]] |
866
|
|
|
search_param = get_search_param(index_type) |
867
|
|
|
status, result = connect.search(ip_collection, top_k, query_vecs, params=search_param) |
868
|
|
|
logging.getLogger().debug(status) |
869
|
|
|
logging.getLogger().debug(result) |
870
|
|
|
distance_0 = numpy.inner(numpy.array(query_vecs[0]), numpy.array(vectors[0])) |
871
|
|
|
distance_1 = numpy.inner(numpy.array(query_vecs[0]), numpy.array(vectors[1])) |
872
|
|
|
assert abs(result[0][0].distance - max(distance_0, distance_1)) <= gen_inaccuracy(result[0][0].distance) |
873
|
|
|
|
874
|
|
|
# def test_search_concurrent(self, connect, collection): |
875
|
|
|
# vectors, ids = self.init_data(connect, collection, nb=5000) |
876
|
|
|
# thread_num = 50 |
877
|
|
|
# nq = 1 |
878
|
|
|
# top_k = 2 |
879
|
|
|
# threads = [] |
880
|
|
|
# query_vecs = vectors[:nq] |
881
|
|
|
# def search(thread_number): |
882
|
|
|
# for i in range(1000000): |
883
|
|
|
# status, result = connect.search(collection, top_k, query_vecs, timeout=2) |
884
|
|
|
# assert len(result) == len(query_vecs) |
885
|
|
|
# assert status.OK() |
886
|
|
|
# if i % 1000 == 0: |
887
|
|
|
# logging.getLogger().info("In %d, %d" % (thread_number, i)) |
888
|
|
|
# logging.getLogger().info("%d finished" % thread_number) |
889
|
|
|
# # with concurrent.futures.ThreadPoolExecutor(max_workers=thread_num) as executor: |
890
|
|
|
# # future_results = {executor.submit( |
891
|
|
|
# # search): i for i in range(1000000)} |
892
|
|
|
# # for future in concurrent.futures.as_completed(future_results): |
893
|
|
|
# # future.result() |
894
|
|
|
# for i in range(thread_num): |
895
|
|
|
# t = threading.Thread(target=search, args=(i, )) |
896
|
|
|
# threads.append(t) |
897
|
|
|
# t.start() |
898
|
|
|
# for t in threads: |
899
|
|
|
# t.join() |
900
|
|
|
|
901
|
|
View Code Duplication |
@pytest.mark.level(2) |
|
|
|
|
902
|
|
|
@pytest.mark.timeout(30) |
903
|
|
|
def test_search_concurrent_multithreads(self, args): |
904
|
|
|
''' |
905
|
|
|
target: test concurrent search with multiprocessess |
906
|
|
|
method: search with 10 processes, each process uses dependent connection |
907
|
|
|
expected: status ok and the returned vectors should be query_records |
908
|
|
|
''' |
909
|
|
|
nb = 100 |
910
|
|
|
top_k = 10 |
911
|
|
|
threads_num = 4 |
912
|
|
|
threads = [] |
913
|
|
|
collection = gen_unique_str("test_search_concurrent_multiprocessing") |
914
|
|
|
uri = "tcp://%s:%s" % (args["ip"], args["port"]) |
915
|
|
|
param = {'collection_name': collection, |
916
|
|
|
'dimension': dim, |
917
|
|
|
'index_type': IndexType.FLAT, |
918
|
|
|
'store_raw_vector': False} |
919
|
|
|
# create collection |
920
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
921
|
|
|
milvus.create_collection(param) |
922
|
|
|
vectors, ids = self.init_data(milvus, collection, nb=nb) |
923
|
|
|
query_vecs = vectors[nb // 2:nb] |
924
|
|
|
|
925
|
|
|
def search(milvus): |
926
|
|
|
status, result = milvus.search(collection, top_k, query_vecs) |
927
|
|
|
assert len(result) == len(query_vecs) |
928
|
|
|
for i in range(len(query_vecs)): |
929
|
|
|
assert result[i][0].id in ids |
930
|
|
|
assert result[i][0].distance == 0.0 |
931
|
|
|
|
932
|
|
|
for i in range(threads_num): |
933
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
934
|
|
|
t = threading.Thread(target=search, args=(milvus,)) |
935
|
|
|
threads.append(t) |
936
|
|
|
t.start() |
937
|
|
|
time.sleep(0.2) |
938
|
|
|
for t in threads: |
939
|
|
|
t.join() |
940
|
|
|
|
941
|
|
|
# TODO: enable |
942
|
|
View Code Duplication |
@pytest.mark.timeout(30) |
|
|
|
|
943
|
|
|
def _test_search_concurrent_multiprocessing(self, args): |
944
|
|
|
''' |
945
|
|
|
target: test concurrent search with multiprocessess |
946
|
|
|
method: search with 10 processes, each process uses dependent connection |
947
|
|
|
expected: status ok and the returned vectors should be query_records |
948
|
|
|
''' |
949
|
|
|
nb = 100 |
950
|
|
|
top_k = 10 |
951
|
|
|
process_num = 4 |
952
|
|
|
processes = [] |
953
|
|
|
collection = gen_unique_str("test_search_concurrent_multiprocessing") |
954
|
|
|
uri = "tcp://%s:%s" % (args["ip"], args["port"]) |
955
|
|
|
param = {'collection_name': collection, |
956
|
|
|
'dimension': dim, |
957
|
|
|
'index_type': IndexType.FLAT, |
958
|
|
|
'store_raw_vector': False} |
959
|
|
|
# create collection |
960
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
961
|
|
|
milvus.create_collection(param) |
962
|
|
|
vectors, ids = self.init_data(milvus, collection, nb=nb) |
963
|
|
|
query_vecs = vectors[nb // 2:nb] |
964
|
|
|
|
965
|
|
|
def search(milvus): |
966
|
|
|
status, result = milvus.search(collection, top_k, query_vecs) |
967
|
|
|
assert len(result) == len(query_vecs) |
968
|
|
|
for i in range(len(query_vecs)): |
969
|
|
|
assert result[i][0].id in ids |
970
|
|
|
assert result[i][0].distance == 0.0 |
971
|
|
|
|
972
|
|
|
for i in range(process_num): |
973
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
974
|
|
|
p = Process(target=search, args=(milvus,)) |
975
|
|
|
processes.append(p) |
976
|
|
|
p.start() |
977
|
|
|
time.sleep(0.2) |
978
|
|
|
for p in processes: |
979
|
|
|
p.join() |
980
|
|
|
|
981
|
|
View Code Duplication |
def test_search_multi_collection_L2(search, args): |
|
|
|
|
982
|
|
|
''' |
983
|
|
|
target: test search multi collections of L2 |
984
|
|
|
method: add vectors into 10 collections, and search |
985
|
|
|
expected: search status ok, the length of result |
986
|
|
|
''' |
987
|
|
|
num = 10 |
988
|
|
|
top_k = 10 |
989
|
|
|
collections = [] |
990
|
|
|
idx = [] |
991
|
|
|
for i in range(num): |
992
|
|
|
collection = gen_unique_str("test_add_multicollection_%d" % i) |
993
|
|
|
uri = "tcp://%s:%s" % (args["ip"], args["port"]) |
994
|
|
|
param = {'collection_name': collection, |
995
|
|
|
'dimension': dim, |
996
|
|
|
'index_file_size': 10, |
997
|
|
|
'metric_type': MetricType.L2} |
998
|
|
|
# create collection |
999
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
1000
|
|
|
milvus.create_collection(param) |
1001
|
|
|
status, ids = milvus.insert(collection, vectors) |
1002
|
|
|
assert status.OK() |
1003
|
|
|
assert len(ids) == len(vectors) |
1004
|
|
|
collections.append(collection) |
1005
|
|
|
idx.append(ids[0]) |
1006
|
|
|
idx.append(ids[10]) |
1007
|
|
|
idx.append(ids[20]) |
1008
|
|
|
milvus.flush([collection]) |
1009
|
|
|
query_vecs = [vectors[0], vectors[10], vectors[20]] |
1010
|
|
|
# start query from random collection |
1011
|
|
|
for i in range(num): |
1012
|
|
|
collection = collections[i] |
1013
|
|
|
status, result = milvus.search(collection, top_k, query_vecs) |
|
|
|
|
1014
|
|
|
assert status.OK() |
1015
|
|
|
assert len(result) == len(query_vecs) |
1016
|
|
|
for j in range(len(query_vecs)): |
1017
|
|
|
assert len(result[j]) == top_k |
1018
|
|
|
for j in range(len(query_vecs)): |
1019
|
|
|
assert check_result(result[j], idx[3 * i + j]) |
1020
|
|
|
|
1021
|
|
View Code Duplication |
def test_search_multi_collection_IP(search, args): |
|
|
|
|
1022
|
|
|
''' |
1023
|
|
|
target: test search multi collections of IP |
1024
|
|
|
method: add vectors into 10 collections, and search |
1025
|
|
|
expected: search status ok, the length of result |
1026
|
|
|
''' |
1027
|
|
|
num = 10 |
1028
|
|
|
top_k = 10 |
1029
|
|
|
collections = [] |
1030
|
|
|
idx = [] |
1031
|
|
|
for i in range(num): |
1032
|
|
|
collection = gen_unique_str("test_add_multicollection_%d" % i) |
1033
|
|
|
uri = "tcp://%s:%s" % (args["ip"], args["port"]) |
1034
|
|
|
param = {'collection_name': collection, |
1035
|
|
|
'dimension': dim, |
1036
|
|
|
'index_file_size': 10, |
1037
|
|
|
'metric_type': MetricType.L2} |
1038
|
|
|
# create collection |
1039
|
|
|
milvus = get_milvus(args["ip"], args["port"], handler=args["handler"]) |
1040
|
|
|
milvus.create_collection(param) |
1041
|
|
|
status, ids = milvus.insert(collection, vectors) |
1042
|
|
|
assert status.OK() |
1043
|
|
|
assert len(ids) == len(vectors) |
1044
|
|
|
collections.append(collection) |
1045
|
|
|
idx.append(ids[0]) |
1046
|
|
|
idx.append(ids[10]) |
1047
|
|
|
idx.append(ids[20]) |
1048
|
|
|
milvus.flush([collection]) |
1049
|
|
|
query_vecs = [vectors[0], vectors[10], vectors[20]] |
1050
|
|
|
# start query from random collection |
1051
|
|
|
for i in range(num): |
1052
|
|
|
collection = collections[i] |
1053
|
|
|
status, result = milvus.search(collection, top_k, query_vecs) |
|
|
|
|
1054
|
|
|
assert status.OK() |
1055
|
|
|
assert len(result) == len(query_vecs) |
1056
|
|
|
for j in range(len(query_vecs)): |
1057
|
|
|
assert len(result[j]) == top_k |
1058
|
|
|
for j in range(len(query_vecs)): |
1059
|
|
|
assert check_result(result[j], idx[3 * i + j]) |
1060
|
|
|
|
1061
|
|
|
@pytest.fixture(params=MetricType) |
1062
|
|
|
def get_binary_metric_types(self, request): |
1063
|
|
|
if request.param == MetricType.INVALID: |
1064
|
|
|
pytest.skip(("metric type invalid")) |
1065
|
|
|
if request.param in [MetricType.L2, MetricType.IP]: |
1066
|
|
|
pytest.skip(("L2 and IP not support in binary")) |
1067
|
|
|
return request.param |
1068
|
|
|
|
1069
|
|
|
# 4678 and # 4683 |
1070
|
|
|
def test_search_binary_dim_not_power_of_2(self, connect, get_binary_metric_types): |
1071
|
|
|
metric = get_binary_metric_types |
1072
|
|
|
collection = gen_unique_str(collection_id) |
1073
|
|
|
dim = 200 |
1074
|
|
|
top_k = 1 |
1075
|
|
|
param = {'collection_name': collection, |
1076
|
|
|
'dimension': dim, |
1077
|
|
|
'index_file_size': 10, |
1078
|
|
|
'metric_type': metric} |
1079
|
|
|
status = connect.create_collection(param) |
1080
|
|
|
assert status.OK() |
1081
|
|
|
int_vectors, vectors, ids = self.init_binary_data(connect, collection, nb=1000, dim=dim) |
1082
|
|
|
search_param = get_search_param(IndexType.FLAT) |
1083
|
|
|
status, result = connect.search(collection, top_k, vectors[:1], params=search_param) |
1084
|
|
|
assert status.OK() |
1085
|
|
|
assert result[0][0].id in ids |
1086
|
|
|
assert result[0][0].distance == 0.0 |
1087
|
|
|
|
1088
|
|
|
@pytest.fixture(params=MetricType) |
1089
|
|
|
def get_metric_types(self, request): |
1090
|
|
|
if request.param == MetricType.INVALID: |
1091
|
|
|
pytest.skip(("metric type invalid")) |
1092
|
|
|
if request.param not in [MetricType.L2, MetricType.IP]: |
1093
|
|
|
pytest.skip(("L2 and IP not support in binary")) |
1094
|
|
|
return request.param |
1095
|
|
|
|
1096
|
|
|
def test_search_float_dim_not_power_of_2(self, connect, get_metric_types): |
1097
|
|
|
metric = get_metric_types |
1098
|
|
|
collection = gen_unique_str(collection_id) |
1099
|
|
|
dim = 200 |
1100
|
|
|
top_k = 1 |
1101
|
|
|
param = {'collection_name': collection, |
1102
|
|
|
'dimension': dim, |
1103
|
|
|
'index_file_size': 10, |
1104
|
|
|
'metric_type': metric} |
1105
|
|
|
status = connect.create_collection(param) |
1106
|
|
|
assert status.OK() |
1107
|
|
|
vectors, ids = self.init_data(connect, collection, nb=1000, dim=dim) |
1108
|
|
|
search_param = get_search_param(IndexType.FLAT) |
1109
|
|
|
status, result = connect.search(collection, top_k, vectors[:1], params=search_param) |
1110
|
|
|
assert status.OK() |
1111
|
|
|
assert result[0][0].id in ids |
1112
|
|
|
|
1113
|
|
|
""" |
1114
|
|
|
****************************************************************** |
1115
|
|
|
# The following cases are used to test `search_vectors` function |
1116
|
|
|
# with invalid collection_name top-k / nprobe / query_range |
1117
|
|
|
****************************************************************** |
1118
|
|
|
""" |
1119
|
|
|
|
1120
|
|
|
|
1121
|
|
|
class TestSearchParamsInvalid(object): |
1122
|
|
|
nlist = 16384 |
1123
|
|
|
index_type = IndexType.IVF_SQ8 |
1124
|
|
|
index_param = {"nlist": nlist} |
1125
|
|
|
logging.getLogger().info(index_param) |
1126
|
|
|
|
1127
|
|
|
def init_data(self, connect, collection, nb=6000): |
1128
|
|
|
''' |
1129
|
|
|
Generate vectors and add it in collection, before search vectors |
1130
|
|
|
''' |
1131
|
|
|
global vectors |
1132
|
|
|
if nb == 6000: |
1133
|
|
|
insert = vectors |
1134
|
|
|
else: |
1135
|
|
|
insert = gen_vectors(nb, dim) |
1136
|
|
|
status, ids = connect.insert(collection, insert) |
1137
|
|
|
connect.flush([collection]) |
1138
|
|
|
return insert, ids |
1139
|
|
|
|
1140
|
|
|
""" |
1141
|
|
|
Test search collection with invalid collection names |
1142
|
|
|
""" |
1143
|
|
|
|
1144
|
|
|
@pytest.fixture( |
1145
|
|
|
scope="function", |
1146
|
|
|
params=gen_invalid_collection_names() |
1147
|
|
|
) |
1148
|
|
|
def get_collection_name(self, request): |
1149
|
|
|
yield request.param |
1150
|
|
|
|
1151
|
|
|
@pytest.mark.level(2) |
1152
|
|
|
def test_search_with_invalid_collectionname(self, connect, get_collection_name): |
1153
|
|
|
collection_name = get_collection_name |
1154
|
|
|
logging.getLogger().info(collection_name) |
1155
|
|
|
nprobe = 1 |
1156
|
|
|
query_vecs = gen_vectors(1, dim) |
1157
|
|
|
status, result = connect.search(collection_name, top_k, query_vecs) |
1158
|
|
|
assert not status.OK() |
1159
|
|
|
|
1160
|
|
|
@pytest.mark.level(1) |
1161
|
|
|
def test_search_with_invalid_tag_format(self, connect, collection): |
1162
|
|
|
nprobe = 1 |
1163
|
|
|
query_vecs = gen_vectors(1, dim) |
1164
|
|
|
with pytest.raises(Exception) as e: |
1165
|
|
|
status, result = connect.search(collection, top_k, query_vecs, partition_tags="tag") |
1166
|
|
|
logging.getLogger().debug(result) |
1167
|
|
|
|
1168
|
|
|
@pytest.mark.level(1) |
1169
|
|
|
def test_search_with_tag_not_existed(self, connect, collection): |
1170
|
|
|
nprobe = 1 |
1171
|
|
|
query_vecs = gen_vectors(1, dim) |
1172
|
|
|
status, result = connect.search(collection, top_k, query_vecs, partition_tags=["tag"]) |
1173
|
|
|
logging.getLogger().info(result) |
1174
|
|
|
assert not status.OK() |
1175
|
|
|
|
1176
|
|
|
""" |
1177
|
|
|
Test search collection with invalid top-k |
1178
|
|
|
""" |
1179
|
|
|
|
1180
|
|
|
@pytest.fixture( |
1181
|
|
|
scope="function", |
1182
|
|
|
params=gen_invalid_top_ks() |
1183
|
|
|
) |
1184
|
|
|
def get_top_k(self, request): |
1185
|
|
|
yield request.param |
1186
|
|
|
|
1187
|
|
View Code Duplication |
@pytest.mark.level(1) |
|
|
|
|
1188
|
|
|
def test_search_with_invalid_top_k(self, connect, collection, get_top_k): |
1189
|
|
|
''' |
1190
|
|
|
target: test search fuction, with the wrong top_k |
1191
|
|
|
method: search with top_k |
1192
|
|
|
expected: raise an error, and the connection is normal |
1193
|
|
|
''' |
1194
|
|
|
top_k = get_top_k |
1195
|
|
|
logging.getLogger().info(top_k) |
1196
|
|
|
nprobe = 1 |
1197
|
|
|
query_vecs = gen_vectors(1, dim) |
1198
|
|
|
if isinstance(top_k, int): |
1199
|
|
|
status, result = connect.search(collection, top_k, query_vecs) |
1200
|
|
|
assert not status.OK() |
1201
|
|
|
else: |
1202
|
|
|
with pytest.raises(Exception) as e: |
1203
|
|
|
status, result = connect.search(collection, top_k, query_vecs) |
1204
|
|
|
|
1205
|
|
View Code Duplication |
@pytest.mark.level(2) |
|
|
|
|
1206
|
|
|
def test_search_with_invalid_top_k_ip(self, connect, ip_collection, get_top_k): |
1207
|
|
|
''' |
1208
|
|
|
target: test search fuction, with the wrong top_k |
1209
|
|
|
method: search with top_k |
1210
|
|
|
expected: raise an error, and the connection is normal |
1211
|
|
|
''' |
1212
|
|
|
top_k = get_top_k |
1213
|
|
|
logging.getLogger().info(top_k) |
1214
|
|
|
nprobe = 1 |
1215
|
|
|
query_vecs = gen_vectors(1, dim) |
1216
|
|
|
if isinstance(top_k, int): |
1217
|
|
|
status, result = connect.search(ip_collection, top_k, query_vecs) |
1218
|
|
|
assert not status.OK() |
1219
|
|
|
else: |
1220
|
|
|
with pytest.raises(Exception) as e: |
1221
|
|
|
status, result = connect.search(ip_collection, top_k, query_vecs) |
1222
|
|
|
|
1223
|
|
|
""" |
1224
|
|
|
Test search collection with invalid nprobe |
1225
|
|
|
""" |
1226
|
|
|
|
1227
|
|
|
@pytest.fixture( |
1228
|
|
|
scope="function", |
1229
|
|
|
params=gen_invalid_nprobes() |
1230
|
|
|
) |
1231
|
|
|
def get_nprobes(self, request): |
1232
|
|
|
yield request.param |
1233
|
|
|
|
1234
|
|
View Code Duplication |
@pytest.mark.level(1) |
|
|
|
|
1235
|
|
|
def test_search_with_invalid_nprobe(self, connect, collection, get_nprobes): |
1236
|
|
|
''' |
1237
|
|
|
target: test search fuction, with the wrong nprobe |
1238
|
|
|
method: search with nprobe |
1239
|
|
|
expected: raise an error, and the connection is normal |
1240
|
|
|
''' |
1241
|
|
|
index_type = IndexType.IVF_SQ8 |
1242
|
|
|
index_param = {"nlist": 16384} |
1243
|
|
|
connect.create_index(collection, index_type, index_param) |
1244
|
|
|
nprobe = get_nprobes |
1245
|
|
|
search_param = {"nprobe": nprobe} |
1246
|
|
|
logging.getLogger().info(nprobe) |
1247
|
|
|
query_vecs = gen_vectors(1, dim) |
1248
|
|
|
# if isinstance(nprobe, int): |
1249
|
|
|
status, result = connect.search(collection, top_k, query_vecs, params=search_param) |
1250
|
|
|
assert not status.OK() |
1251
|
|
|
# else: |
1252
|
|
|
# with pytest.raises(Exception) as e: |
1253
|
|
|
# status, result = connect.search(collection, top_k, query_vecs, params=search_param) |
1254
|
|
|
|
1255
|
|
View Code Duplication |
@pytest.mark.level(2) |
|
|
|
|
1256
|
|
|
def test_search_with_invalid_nprobe_ip(self, connect, ip_collection, get_nprobes): |
1257
|
|
|
''' |
1258
|
|
|
target: test search fuction, with the wrong top_k |
1259
|
|
|
method: search with top_k |
1260
|
|
|
expected: raise an error, and the connection is normal |
1261
|
|
|
''' |
1262
|
|
|
index_type = IndexType.IVF_SQ8 |
1263
|
|
|
index_param = {"nlist": 16384} |
1264
|
|
|
connect.create_index(ip_collection, index_type, index_param) |
1265
|
|
|
nprobe = get_nprobes |
1266
|
|
|
search_param = {"nprobe": nprobe} |
1267
|
|
|
logging.getLogger().info(nprobe) |
1268
|
|
|
query_vecs = gen_vectors(1, dim) |
1269
|
|
|
|
1270
|
|
|
# if isinstance(nprobe, int): |
1271
|
|
|
status, result = connect.search(ip_collection, top_k, query_vecs, params=search_param) |
1272
|
|
|
assert not status.OK() |
1273
|
|
|
# else: |
1274
|
|
|
# with pytest.raises(Exception) as e: |
1275
|
|
|
# status, result = connect.search(ip_collection, top_k, query_vecs, params=search_param) |
1276
|
|
|
|
1277
|
|
|
def test_search_with_2049_nprobe(self, connect, collection): |
1278
|
|
|
''' |
1279
|
|
|
target: test search function, with 2049 nprobe in GPU mode |
1280
|
|
|
method: search with nprobe |
1281
|
|
|
expected: status not ok |
1282
|
|
|
''' |
1283
|
|
|
if str(connect._cmd("mode")[1]) == "CPU": |
1284
|
|
|
pytest.skip("Only support GPU mode") |
1285
|
|
|
for index in gen_simple_index(): |
1286
|
|
|
if index["index_type"] in [IndexType.IVF_PQ, IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H]: |
1287
|
|
|
index_type = index["index_type"] |
1288
|
|
|
index_param = index["index_param"] |
1289
|
|
|
self.init_data(connect, collection) |
1290
|
|
|
connect.create_index(collection, index_type, index_param) |
1291
|
|
|
nprobe = 2049 |
1292
|
|
|
search_param = {"nprobe": nprobe} |
1293
|
|
|
query_vecs = gen_vectors(nprobe, dim) |
1294
|
|
|
status, result = connect.search(collection, top_k, query_vecs, params=search_param) |
1295
|
|
|
assert status.OK() |
1296
|
|
|
|
1297
|
|
View Code Duplication |
@pytest.fixture( |
|
|
|
|
1298
|
|
|
scope="function", |
1299
|
|
|
params=gen_simple_index() |
1300
|
|
|
) |
1301
|
|
|
def get_simple_index(self, request, connect): |
1302
|
|
|
if str(connect._cmd("mode")[1]) == "CPU": |
1303
|
|
|
if request.param["index_type"] == IndexType.IVF_SQ8H: |
1304
|
|
|
pytest.skip("sq8h not support in CPU mode") |
1305
|
|
|
if str(connect._cmd("mode")[1]) == "GPU": |
1306
|
|
|
if request.param["index_type"] == IndexType.IVF_PQ: |
1307
|
|
|
pytest.skip("ivfpq not support in GPU mode") |
1308
|
|
|
return request.param |
1309
|
|
|
|
1310
|
|
|
def test_search_with_empty_params(self, connect, collection, args, get_simple_index): |
1311
|
|
|
''' |
1312
|
|
|
target: test search fuction, with empty search params |
1313
|
|
|
method: search with params |
1314
|
|
|
expected: search status not ok, and the connection is normal |
1315
|
|
|
''' |
1316
|
|
|
if args["handler"] == "HTTP": |
1317
|
|
|
pytest.skip("skip in http mode") |
1318
|
|
|
index_type = get_simple_index["index_type"] |
1319
|
|
|
index_param = get_simple_index["index_param"] |
1320
|
|
|
connect.create_index(collection, index_type, index_param) |
1321
|
|
|
query_vecs = gen_vectors(1, dim) |
1322
|
|
|
status, result = connect.search(collection, top_k, query_vecs, params={}) |
1323
|
|
|
|
1324
|
|
|
if index_type == IndexType.FLAT: |
1325
|
|
|
assert status.OK() |
1326
|
|
|
else: |
1327
|
|
|
assert not status.OK() |
1328
|
|
|
|
1329
|
|
|
@pytest.fixture( |
1330
|
|
|
scope="function", |
1331
|
|
|
params=gen_invaild_search_params() |
1332
|
|
|
) |
1333
|
|
|
def get_invalid_search_param(self, request, connect): |
1334
|
|
|
if str(connect._cmd("mode")[1]) == "CPU": |
1335
|
|
|
if request.param["index_type"] == IndexType.IVF_SQ8H: |
1336
|
|
|
pytest.skip("sq8h not support in CPU mode") |
1337
|
|
|
if str(connect._cmd("mode")[1]) == "GPU": |
1338
|
|
|
if request.param["index_type"] == IndexType.IVF_PQ: |
1339
|
|
|
pytest.skip("ivfpq not support in GPU mode") |
1340
|
|
|
return request.param |
1341
|
|
|
|
1342
|
|
|
def test_search_with_invalid_params(self, connect, collection, get_invalid_search_param): |
1343
|
|
|
''' |
1344
|
|
|
target: test search fuction, with invalid search params |
1345
|
|
|
method: search with params |
1346
|
|
|
expected: search status not ok, and the connection is normal |
1347
|
|
|
''' |
1348
|
|
|
index_type = get_invalid_search_param["index_type"] |
1349
|
|
|
search_param = get_invalid_search_param["search_param"] |
1350
|
|
|
for index in gen_simple_index(): |
1351
|
|
|
if index_type == index["index_type"]: |
1352
|
|
|
connect.create_index(collection, index_type, index["index_param"]) |
1353
|
|
|
query_vecs = gen_vectors(1, dim) |
1354
|
|
|
status, result = connect.search(collection, top_k, query_vecs, params=search_param) |
1355
|
|
|
assert not status.OK() |
1356
|
|
|
|
1357
|
|
|
|
1358
|
|
|
def check_result(result, id): |
1359
|
|
|
if len(result) >= 5: |
1360
|
|
|
return id in [result[0].id, result[1].id, result[2].id, result[3].id, result[4].id] |
1361
|
|
|
else: |
1362
|
|
|
return id in (i.id for i in result) |
|
|
|
|
1363
|
|
|
|