1
|
|
|
from __future__ import division |
2
|
|
|
import logging |
3
|
|
|
import os.path |
4
|
|
|
import tarfile |
5
|
|
|
import tempfile |
6
|
|
|
from collections import OrderedDict |
7
|
|
|
from contextlib import contextmanager |
8
|
|
|
|
9
|
|
|
import h5py |
10
|
|
|
import numpy |
11
|
|
|
from scipy.io.matlab import loadmat |
12
|
|
|
from six.moves import zip, xrange |
|
|
|
|
13
|
|
|
|
14
|
|
|
from fuel import config |
15
|
|
|
from fuel.converters.base import check_exists |
16
|
|
|
from fuel.datasets import H5PYDataset |
17
|
|
|
from fuel.utils.formats import tar_open |
18
|
|
|
from .ilsvrc2010 import (process_train_set, |
19
|
|
|
process_other_set) |
20
|
|
|
|
21
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
22
|
|
|
|
23
|
|
|
DEVKIT_ARCHIVE = 'ILSVRC2012_devkit_t12.tar.gz' |
24
|
|
|
DEVKIT_META_PATH = 'ILSVRC2012_devkit_t12/data/meta.mat' |
25
|
|
|
DEVKIT_VALID_GROUNDTRUTH_PATH = ('ILSVRC2012_devkit_t12/data/' |
26
|
|
|
'ILSVRC2012_validation_ground_truth.txt') |
27
|
|
|
TRAIN_IMAGES_TAR = 'ILSVRC2012_img_train.tar' |
28
|
|
|
VALID_IMAGES_TAR = 'ILSVRC2012_img_val.tar' |
29
|
|
|
TEST_IMAGES_TAR = 'ILSVRC2012_img_test.tar' |
30
|
|
|
IMAGE_TARS = (TRAIN_IMAGES_TAR, VALID_IMAGES_TAR, TEST_IMAGES_TAR) |
31
|
|
|
ALL_FILES = (DEVKIT_ARCHIVE,) + IMAGE_TARS |
32
|
|
|
|
33
|
|
|
|
34
|
|
View Code Duplication |
@check_exists(required_files=ALL_FILES) |
|
|
|
|
35
|
|
|
def convert_ilsvrc2012(directory, output_directory, |
36
|
|
|
output_filename='ilsvrc2012.hdf5', |
37
|
|
|
shuffle_seed=config.default_seed): |
38
|
|
|
"""Converter for data from the ILSVRC 2012 competition. |
39
|
|
|
|
40
|
|
|
Source files for this dataset can be obtained by registering at |
41
|
|
|
[ILSVRC2012WEB]. |
42
|
|
|
|
43
|
|
|
Parameters |
44
|
|
|
---------- |
45
|
|
|
input_directory : str |
46
|
|
|
Path from which to read raw data files. |
47
|
|
|
output_directory : str |
48
|
|
|
Path to which to save the HDF5 file. |
49
|
|
|
output_filename : str, optional |
50
|
|
|
The output filename for the HDF5 file. Default: 'ilsvrc2012.hdf5'. |
51
|
|
|
shuffle_seed : int or sequence, optional |
52
|
|
|
Seed for a random number generator used to shuffle the order |
53
|
|
|
of the training set on disk, so that sequential reads will not |
54
|
|
|
be ordered by class. |
55
|
|
|
|
56
|
|
|
.. [ILSVRC2012WEB] http://image-net.org/challenges/LSVRC/2012/index |
57
|
|
|
|
58
|
|
|
""" |
59
|
|
|
devkit_path = os.path.join(directory, DEVKIT_ARCHIVE) |
60
|
|
|
train, valid, test = [os.path.join(directory, fn) for fn in IMAGE_TARS] |
61
|
|
|
n_train, valid_groundtruth, n_test, wnid_map = prepare_metadata( |
62
|
|
|
devkit_path) |
63
|
|
|
n_valid = len(valid_groundtruth) |
64
|
|
|
output_path = os.path.join(output_directory, output_filename) |
65
|
|
|
|
66
|
|
|
with h5py.File(output_path, 'w') as f, create_temp_tar() as patch: |
67
|
|
|
log.info('Creating HDF5 datasets...') |
68
|
|
|
prepare_hdf5_file(f, n_train, n_valid, n_test) |
69
|
|
|
log.info('Processing training set...') |
70
|
|
|
process_train_set(f, train, patch, n_train, wnid_map, shuffle_seed) |
71
|
|
|
log.info('Processing validation set...') |
72
|
|
|
process_other_set(f, 'valid', valid, patch, valid_groundtruth, n_train) |
73
|
|
|
log.info('Processing test set...') |
74
|
|
|
process_other_set(f, 'test', test, patch, (None,) * n_test, |
75
|
|
|
n_train + n_valid) |
76
|
|
|
log.info('Done.') |
77
|
|
|
|
78
|
|
|
return (output_path,) |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
def fill_subparser(subparser): |
82
|
|
|
"""Sets up a subparser to convert the ILSVRC2012 dataset files. |
83
|
|
|
|
84
|
|
|
Parameters |
85
|
|
|
---------- |
86
|
|
|
subparser : :class:`argparse.ArgumentParser` |
87
|
|
|
Subparser handling the `ilsvrc2012` command. |
88
|
|
|
|
89
|
|
|
""" |
90
|
|
|
subparser.add_argument( |
91
|
|
|
"--shuffle-seed", help="Seed to use for randomizing order of the " |
92
|
|
|
"training set on disk.", |
93
|
|
|
default=config.default_seed, type=int, required=False) |
94
|
|
|
return convert_ilsvrc2012 |
95
|
|
|
|
96
|
|
|
|
97
|
|
View Code Duplication |
def prepare_metadata(devkit_archive): |
|
|
|
|
98
|
|
|
"""Extract dataset metadata required for HDF5 file setup. |
99
|
|
|
|
100
|
|
|
Parameters |
101
|
|
|
---------- |
102
|
|
|
devkit_archive : str or file-like object |
103
|
|
|
The filename or file-handle for the gzipped TAR archive |
104
|
|
|
containing the ILSVRC2012 development kit. |
105
|
|
|
|
106
|
|
|
Returns |
107
|
|
|
------- |
108
|
|
|
n_train : int |
109
|
|
|
The number of examples in the training set. |
110
|
|
|
valid_groundtruth : ndarray, 1-dimensional |
111
|
|
|
An ndarray containing the validation set groundtruth in terms of |
112
|
|
|
0-based class indices. |
113
|
|
|
n_test : int |
114
|
|
|
The number of examples in the test set |
115
|
|
|
wnid_map : dict |
116
|
|
|
A dictionary that maps WordNet IDs to 0-based class indices. |
117
|
|
|
|
118
|
|
|
""" |
119
|
|
|
# Read what's necessary from the development kit. |
120
|
|
|
synsets, raw_valid_groundtruth = read_devkit(devkit_archive) |
121
|
|
|
|
122
|
|
|
# Mapping to take WordNet IDs to our internal 0-999 encoding. |
123
|
|
|
wnid_map = dict(zip((s.decode('utf8') for s in synsets['WNID']), |
124
|
|
|
xrange(1000))) |
125
|
|
|
|
126
|
|
|
# Map the 'ILSVRC2012 ID' to our zero-based ID. |
127
|
|
|
ilsvrc_id_to_zero_based = dict(zip(synsets['ILSVRC2012_ID'], |
128
|
|
|
xrange(len(synsets)))) |
129
|
|
|
|
130
|
|
|
# Map the validation set groundtruth to 0-999 labels. |
131
|
|
|
valid_groundtruth = [ilsvrc_id_to_zero_based[id_] |
132
|
|
|
for id_ in raw_valid_groundtruth] |
133
|
|
|
|
134
|
|
|
# Get number of test examples from the test archive |
135
|
|
|
with tar_open(TEST_IMAGES_TAR) as f: |
136
|
|
|
n_test = sum(1 for _ in f) |
137
|
|
|
|
138
|
|
|
# Ascertain the number of filenames to prepare appropriate sized |
139
|
|
|
# arrays. |
140
|
|
|
n_train = int(synsets['num_train_images'].sum()) |
141
|
|
|
log.info('Training set: {} images'.format(n_train)) |
142
|
|
|
log.info('Validation set: {} images'.format(len(valid_groundtruth))) |
143
|
|
|
log.info('Test set: {} images'.format(n_test)) |
144
|
|
|
n_total = n_train + len(valid_groundtruth) + n_test |
145
|
|
|
log.info('Total (train/valid): {} images'.format(n_total)) |
146
|
|
|
return n_train, valid_groundtruth, n_test, wnid_map |
147
|
|
|
|
148
|
|
|
|
149
|
|
View Code Duplication |
def create_splits(n_train, n_valid, n_test): |
|
|
|
|
150
|
|
|
n_total = n_train + n_valid + n_test |
151
|
|
|
tuples = {} |
152
|
|
|
tuples['train'] = (0, n_train) |
153
|
|
|
tuples['valid'] = (n_train, n_train + n_valid) |
154
|
|
|
tuples['test'] = (n_train + n_valid, n_total) |
155
|
|
|
sources = ['encoded_images', 'targets', 'filenames'] |
156
|
|
|
return OrderedDict( |
157
|
|
|
(split, OrderedDict((source, tuples[split]) for source in sources |
158
|
|
|
if source != 'targets' or split != 'test')) |
159
|
|
|
for split in ('train', 'valid', 'test') |
160
|
|
|
) |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
@contextmanager |
164
|
|
|
def create_temp_tar(): |
165
|
|
|
try: |
166
|
|
|
_, temp_tar = tempfile.mkstemp(suffix='.tar') |
167
|
|
|
with tarfile.open(temp_tar, mode='w') as tar: |
168
|
|
|
tar.addfile(tarfile.TarInfo()) |
169
|
|
|
yield temp_tar |
170
|
|
|
finally: |
171
|
|
|
os.remove(temp_tar) |
172
|
|
|
|
173
|
|
|
|
174
|
|
View Code Duplication |
def prepare_hdf5_file(hdf5_file, n_train, n_valid, n_test): |
|
|
|
|
175
|
|
|
"""Create datasets within a given HDF5 file. |
176
|
|
|
|
177
|
|
|
Parameters |
178
|
|
|
---------- |
179
|
|
|
hdf5_file : :class:`h5py.File` instance |
180
|
|
|
HDF5 file handle to which to write. |
181
|
|
|
n_train : int |
182
|
|
|
The number of training set examples. |
183
|
|
|
n_valid : int |
184
|
|
|
The number of validation set examples. |
185
|
|
|
n_test : int |
186
|
|
|
The number of test set examples. |
187
|
|
|
|
188
|
|
|
""" |
189
|
|
|
n_total = n_train + n_valid + n_test |
190
|
|
|
n_labeled = n_train + n_valid |
191
|
|
|
splits = create_splits(n_train, n_valid, n_test) |
192
|
|
|
hdf5_file.attrs['split'] = H5PYDataset.create_split_array(splits) |
193
|
|
|
vlen_dtype = h5py.special_dtype(vlen=numpy.dtype('uint8')) |
194
|
|
|
hdf5_file.create_dataset('encoded_images', shape=(n_total,), |
195
|
|
|
dtype=vlen_dtype) |
196
|
|
|
hdf5_file.create_dataset('targets', shape=(n_labeled, 1), |
197
|
|
|
dtype=numpy.int16) |
198
|
|
|
hdf5_file.create_dataset('filenames', shape=(n_total, 1), dtype='S32') |
199
|
|
|
|
200
|
|
|
|
201
|
|
|
def read_devkit(f): |
202
|
|
|
"""Read relevant information from the development kit archive. |
203
|
|
|
|
204
|
|
|
Parameters |
205
|
|
|
---------- |
206
|
|
|
f : str or file-like object |
207
|
|
|
The filename or file-handle for the gzipped TAR archive |
208
|
|
|
containing the ILSVRC2012 development kit. |
209
|
|
|
|
210
|
|
|
Returns |
211
|
|
|
------- |
212
|
|
|
synsets : ndarray, 1-dimensional, compound dtype |
213
|
|
|
See :func:`read_metadata_mat_file` for details. |
214
|
|
|
raw_valid_groundtruth : ndarray, 1-dimensional, int16 |
215
|
|
|
The labels for the ILSVRC2012 validation set, |
216
|
|
|
distributed with the development kit code. |
217
|
|
|
|
218
|
|
|
""" |
219
|
|
|
with tar_open(f) as tar: |
220
|
|
|
# Metadata table containing class hierarchy, textual descriptions, etc. |
221
|
|
|
meta_mat = tar.extractfile(DEVKIT_META_PATH) |
222
|
|
|
synsets = read_metadata_mat_file(meta_mat) |
223
|
|
|
|
224
|
|
|
# Raw validation data groundtruth, ILSVRC2012 IDs. Confusingly |
225
|
|
|
# distributed inside the development kit archive. |
226
|
|
|
raw_valid_groundtruth = numpy.loadtxt(tar.extractfile( |
227
|
|
|
DEVKIT_VALID_GROUNDTRUTH_PATH), dtype=numpy.int16) |
228
|
|
|
return synsets, raw_valid_groundtruth |
229
|
|
|
|
230
|
|
|
|
231
|
|
View Code Duplication |
def read_metadata_mat_file(meta_mat): |
|
|
|
|
232
|
|
|
"""Read ILSVRC2012 metadata from the distributed MAT file. |
233
|
|
|
|
234
|
|
|
Parameters |
235
|
|
|
---------- |
236
|
|
|
meta_mat : str or file-like object |
237
|
|
|
The filename or file-handle for `meta.mat` from the |
238
|
|
|
ILSVRC2012 development kit. |
239
|
|
|
|
240
|
|
|
Returns |
241
|
|
|
------- |
242
|
|
|
synsets : ndarray, 1-dimensional, compound dtype |
243
|
|
|
A table containing ILSVRC2012 metadata for the "synonym sets" |
244
|
|
|
or "synsets" that comprise the classes and superclasses, |
245
|
|
|
including the following fields: |
246
|
|
|
* `ILSVRC2012_ID`: the integer ID used in the original |
247
|
|
|
competition data. |
248
|
|
|
* `WNID`: A string identifier that uniquely identifies |
249
|
|
|
a synset in ImageNet and WordNet. |
250
|
|
|
* `wordnet_height`: The length of the longest path to |
251
|
|
|
a leaf node in the FULL ImageNet/WordNet hierarchy |
252
|
|
|
(leaf nodes in the FULL ImageNet/WordNet hierarchy |
253
|
|
|
have `wordnet_height` 0). |
254
|
|
|
* `gloss`: A string representation of an English |
255
|
|
|
textual description of the concept represented by |
256
|
|
|
this synset. |
257
|
|
|
* `num_children`: The number of children in the hierarchy |
258
|
|
|
for this synset. |
259
|
|
|
* `words`: A string representation, comma separated, |
260
|
|
|
of different synoym words or phrases for the concept |
261
|
|
|
represented by this synset. |
262
|
|
|
* `children`: A vector of `ILSVRC2012_ID`s of children |
263
|
|
|
of this synset, padded with -1. Note that these refer |
264
|
|
|
to `ILSVRC2012_ID`s from the original data and *not* |
265
|
|
|
the zero-based index in the table. |
266
|
|
|
* `num_train_images`: The number of training images for |
267
|
|
|
this synset. |
268
|
|
|
|
269
|
|
|
""" |
270
|
|
|
mat = loadmat(meta_mat, squeeze_me=True) |
271
|
|
|
synsets = mat['synsets'] |
272
|
|
|
new_dtype = numpy.dtype([ |
273
|
|
|
('ILSVRC2012_ID', numpy.int16), |
274
|
|
|
('WNID', ('S', max(map(len, synsets['WNID'])))), |
275
|
|
|
('wordnet_height', numpy.int8), |
276
|
|
|
('gloss', ('S', max(map(len, synsets['gloss'])))), |
277
|
|
|
('num_children', numpy.int8), |
278
|
|
|
('words', ('S', max(map(len, synsets['words'])))), |
279
|
|
|
('children', (numpy.int8, max(synsets['num_children']))), |
280
|
|
|
('num_train_images', numpy.uint16) |
281
|
|
|
]) |
282
|
|
|
new_synsets = numpy.empty(synsets.shape, dtype=new_dtype) |
283
|
|
|
for attr in ['ILSVRC2012_ID', 'WNID', 'wordnet_height', 'gloss', |
284
|
|
|
'num_children', 'words', 'num_train_images']: |
285
|
|
|
new_synsets[attr] = synsets[attr] |
286
|
|
|
children = [numpy.atleast_1d(ch) for ch in synsets['children']] |
287
|
|
|
padded_children = [ |
288
|
|
|
numpy.concatenate((c, |
289
|
|
|
-numpy.ones(new_dtype['children'].shape[0] - len(c), |
290
|
|
|
dtype=numpy.int16))) |
291
|
|
|
for c in children |
292
|
|
|
] |
293
|
|
|
new_synsets['children'] = padded_children |
294
|
|
|
return new_synsets |
295
|
|
|
|
It is generally discouraged to redefine built-ins as this makes code very hard to read.