| Total Complexity | 1 |
| Total Lines | 27 |
| Duplicated Lines | 0 % |
| 1 | from fuel.datasets import H5PYDataset |
||
| 5 | class Iris(H5PYDataset): |
||
| 6 | u"""Iris dataset. |
||
| 7 | |||
| 8 | Iris [IRIS] is a simple pattern recognition dataset, which consist of |
||
| 9 | 3 classes of 50 examples each having 4 real-valued features each, where |
||
| 10 | each class refers to a type of iris plant. It is accessible through the |
||
| 11 | UCI Machine Learning repository [UCIIRIS]. |
||
| 12 | |||
| 13 | .. [IRIS] Ronald A. Fisher, *The use of multiple measurements in |
||
| 14 | taxonomic problems*, Annual Eugenics, 7, Part II, 179-188, |
||
| 15 | September 1936. |
||
| 16 | .. [UCIIRIS] https://archive.ics.uci.edu/ml/datasets/Iris |
||
| 17 | |||
| 18 | Parameters |
||
| 19 | ---------- |
||
| 20 | which_sets : tuple of str |
||
| 21 | Which split to load. Valid value is 'all' |
||
| 22 | corresponding to 150 examples. |
||
| 23 | |||
| 24 | """ |
||
| 25 | filename = 'iris.hdf5' |
||
| 26 | |||
| 27 | def __init__(self, which_sets, **kwargs): |
||
| 28 | kwargs.setdefault('load_in_memory', True) |
||
| 29 | super(Iris, self).__init__( |
||
| 30 | file_or_path=find_in_data_path(self.filename), |
||
| 31 | which_sets=which_sets, **kwargs) |
||
| 32 |