|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
import numpy |
|
4
|
|
|
|
|
5
|
|
|
from collections import OrderedDict |
|
6
|
|
|
|
|
7
|
|
|
from fuel import config |
|
8
|
|
|
from fuel.datasets import IndexableDataset |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
class Spiral(IndexableDataset): |
|
12
|
|
|
u"""Toy dataset containing points sampled from spirals on a 2d plane. |
|
13
|
|
|
|
|
14
|
|
|
The dataset contains 3 sources: |
|
15
|
|
|
|
|
16
|
|
|
* features -- the (x, y) position of the datapoints |
|
17
|
|
|
* position -- the relative position on the spiral arm |
|
18
|
|
|
* label -- the class labels (spiral arm) |
|
19
|
|
|
|
|
20
|
|
|
.. plot:: |
|
21
|
|
|
|
|
22
|
|
|
from fuel.datasets.toy import Spiral |
|
23
|
|
|
|
|
24
|
|
|
ds = Spiral(classes=3) |
|
25
|
|
|
features, position, label = ds.get_data(None, slice(0, 500)) |
|
26
|
|
|
|
|
27
|
|
|
plt.title("Datapoints drawn from Spiral(classes=3)") |
|
28
|
|
|
for l, m in enumerate(['o', '^', 'v']): |
|
29
|
|
|
mask = label == l |
|
30
|
|
|
plt.scatter(features[mask,0], features[mask,1], |
|
31
|
|
|
c=position[mask], marker=m, label="label==%d"%l) |
|
32
|
|
|
plt.xlim(-1.2, 1.2) |
|
33
|
|
|
plt.ylim(-1.2, 1.2) |
|
34
|
|
|
plt.legend() |
|
35
|
|
|
plt.colorbar() |
|
36
|
|
|
plt.xlabel("features[:,0]") |
|
37
|
|
|
plt.ylabel("features[:,1]") |
|
38
|
|
|
plt.show() |
|
39
|
|
|
|
|
40
|
|
|
Parameters |
|
41
|
|
|
---------- |
|
42
|
|
|
num_examples : int |
|
43
|
|
|
Number of datapoints to create. |
|
44
|
|
|
classes : int |
|
45
|
|
|
Number of spiral arms. |
|
46
|
|
|
cycles : float |
|
47
|
|
|
Number of turns the arms take. |
|
48
|
|
|
noise : float |
|
49
|
|
|
Add normal distributed noise with standard deviation *noise*. |
|
50
|
|
|
|
|
51
|
|
|
""" |
|
52
|
|
|
def __init__(self, num_examples=1000, classes=1, cycles=1., noise=0.0, |
|
53
|
|
|
**kwargs): |
|
54
|
|
|
seed = kwargs.pop('seed', config.default_seed) |
|
55
|
|
|
rng = numpy.random.RandomState(seed) |
|
56
|
|
|
# Create dataset |
|
57
|
|
|
pos = rng.uniform(size=num_examples, low=0, high=cycles) |
|
58
|
|
|
label = rng.randint(size=num_examples, low=0, high=classes) |
|
59
|
|
|
radius = (2 * pos + 1) / 3. |
|
60
|
|
|
phase_offset = label * (2*numpy.pi) / classes |
|
61
|
|
|
|
|
62
|
|
|
features = numpy.zeros(shape=(num_examples, 2), dtype='float32') |
|
63
|
|
|
|
|
64
|
|
|
features[:, 0] = radius * numpy.sin(2*numpy.pi*pos + phase_offset) |
|
65
|
|
|
features[:, 1] = radius * numpy.cos(2*numpy.pi*pos + phase_offset) |
|
66
|
|
|
features += noise * rng.normal(size=(num_examples, 2)) |
|
67
|
|
|
|
|
68
|
|
|
data = OrderedDict([ |
|
69
|
|
|
('features', features), |
|
70
|
|
|
('position', pos), |
|
71
|
|
|
('label', label), |
|
72
|
|
|
]) |
|
73
|
|
|
|
|
74
|
|
|
super(Spiral, self).__init__(data, **kwargs) |
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
class SwissRoll(IndexableDataset): |
|
78
|
|
|
"""Dataset containing points from a 3-dimensional Swiss roll. |
|
79
|
|
|
|
|
80
|
|
|
The dataset contains 2 sources: |
|
81
|
|
|
|
|
82
|
|
|
* features -- the x, y and z position of the datapoints |
|
83
|
|
|
* position -- radial and z position on the manifold |
|
84
|
|
|
|
|
85
|
|
|
.. plot:: |
|
86
|
|
|
|
|
87
|
|
|
from fuel.datasets.toy import SwissRoll |
|
88
|
|
|
import mpl_toolkits.mplot3d.axes3d as p3 |
|
89
|
|
|
import numpy as np |
|
90
|
|
|
|
|
91
|
|
|
ds = SwissRoll() |
|
92
|
|
|
features, pos = ds.get_data(None, slice(0, 1000)) |
|
93
|
|
|
|
|
94
|
|
|
color = pos[:,0] |
|
95
|
|
|
color -= color.min() |
|
96
|
|
|
color /= color.max() |
|
97
|
|
|
|
|
98
|
|
|
fig = plt.figure() |
|
99
|
|
|
ax = fig.gca(projection="3d") |
|
100
|
|
|
ax.scatter(features[:,0], features[:,1], features[:,2], |
|
101
|
|
|
'x', c=color) |
|
102
|
|
|
ax.set_xlim(-1, 1) |
|
103
|
|
|
ax.set_ylim(-1, 1) |
|
104
|
|
|
ax.set_zlim(-1, 1) |
|
105
|
|
|
ax.view_init(10., 10.) |
|
106
|
|
|
plt.show() |
|
107
|
|
|
|
|
108
|
|
|
Parameters |
|
109
|
|
|
---------- |
|
110
|
|
|
num_examples : int |
|
111
|
|
|
Number of datapoints to create. |
|
112
|
|
|
noise : float |
|
113
|
|
|
Add normal distributed noise with standard deviation *noise*. |
|
114
|
|
|
|
|
115
|
|
|
""" |
|
116
|
|
|
def __init__(self, num_examples=1000, noise=0.0, **kwargs): |
|
117
|
|
|
cycles = 1.5 |
|
118
|
|
|
seed = kwargs.pop('seed', config.default_seed) |
|
119
|
|
|
rng = numpy.random.RandomState(seed) |
|
120
|
|
|
pos = rng.uniform(size=num_examples, low=0, high=1) |
|
121
|
|
|
phi = cycles * numpy.pi * (1 + 2*pos) |
|
122
|
|
|
radius = (1 + 2 * pos) / 3 |
|
123
|
|
|
|
|
124
|
|
|
x = radius * numpy.cos(phi) |
|
125
|
|
|
y = radius * numpy.sin(phi) |
|
126
|
|
|
z = rng.uniform(size=num_examples, low=-1, high=1) |
|
127
|
|
|
|
|
128
|
|
|
features = numpy.zeros(shape=(num_examples, 3), dtype='float32') |
|
129
|
|
|
features[:, 0] = x |
|
130
|
|
|
features[:, 1] = y |
|
131
|
|
|
features[:, 2] = z |
|
132
|
|
|
features += noise * rng.normal(size=(num_examples, 3)) |
|
133
|
|
|
|
|
134
|
|
|
position = numpy.zeros(shape=(num_examples, 2), dtype='float32') |
|
135
|
|
|
position[:, 0] = pos |
|
136
|
|
|
position[:, 1] = z |
|
137
|
|
|
|
|
138
|
|
|
data = OrderedDict([ |
|
139
|
|
|
('features', features), |
|
140
|
|
|
('position', position), |
|
141
|
|
|
]) |
|
142
|
|
|
|
|
143
|
|
|
super(SwissRoll, self).__init__(data, **kwargs) |
|
144
|
|
|
|