|
1
|
|
|
from __future__ import division |
|
|
|
|
|
|
2
|
|
|
from io import BytesIO |
|
3
|
|
|
import math |
|
4
|
|
|
|
|
5
|
|
|
import numpy |
|
6
|
|
|
from PIL import Image |
|
7
|
|
|
from six import PY3 |
|
8
|
|
|
|
|
9
|
|
|
try: |
|
10
|
|
|
from ._image import window_batch_bchw |
|
11
|
|
|
window_batch_bchw_available = True |
|
|
|
|
|
|
12
|
|
|
except ImportError: |
|
13
|
|
|
window_batch_bchw_available = False |
|
|
|
|
|
|
14
|
|
|
from . import ExpectsAxisLabels, SourcewiseTransformer |
|
15
|
|
|
from .. import config |
|
16
|
|
|
|
|
17
|
|
|
|
|
18
|
|
|
class ImagesFromBytes(SourcewiseTransformer): |
|
19
|
|
|
"""Load from a stream of bytes objects representing encoded images. |
|
20
|
|
|
|
|
21
|
|
|
Parameters |
|
22
|
|
|
---------- |
|
23
|
|
|
data_stream : instance of :class:`AbstractDataStream` |
|
24
|
|
|
The wrapped data stream. The individual examples returned by this |
|
25
|
|
|
should be the bytes (in a `bytes` container, or a `str` on legacy |
|
26
|
|
|
Python) comprising an image in a format readable by PIL, such as |
|
27
|
|
|
PNG, JPEG, etc. |
|
28
|
|
|
color_mode : str, optional |
|
29
|
|
|
Mode to pass to PIL for color space conversion. Default is RGB. |
|
30
|
|
|
If `None`, no coercion is performed. |
|
31
|
|
|
|
|
32
|
|
|
Notes |
|
33
|
|
|
----- |
|
34
|
|
|
Images are returned as NumPy arrays converted from PIL objects. |
|
35
|
|
|
If there is more than one color channel, then the array is transposed |
|
36
|
|
|
from the `(height, width, channel)` dimension layout native to PIL to |
|
37
|
|
|
the `(channel, height, width)` layout that is pervasive in the world |
|
38
|
|
|
of convolutional networks. If there is only one color channel, as for |
|
39
|
|
|
monochrome or binary images, a leading axis with length 1 is added for |
|
40
|
|
|
the sake of uniformity/predictability. |
|
41
|
|
|
|
|
42
|
|
|
This SourcewiseTransformer supports streams returning single examples |
|
43
|
|
|
as `bytes` objects (`str` on legacy Python) as well as streams that |
|
44
|
|
|
return iterables containing such objects. In the case of an iterable, a |
|
45
|
|
|
list of loaded images is returned. |
|
46
|
|
|
|
|
47
|
|
|
""" |
|
48
|
|
|
def __init__(self, data_stream, color_mode='RGB', **kwargs): |
|
49
|
|
|
kwargs.setdefault('produces_examples', data_stream.produces_examples) |
|
50
|
|
|
# Acrobatics currently required to correctly set axis labels. |
|
51
|
|
|
which_sources = kwargs.get('which_sources', data_stream.sources) |
|
52
|
|
|
axis_labels = self._make_axis_labels(data_stream, which_sources, |
|
53
|
|
|
kwargs['produces_examples']) |
|
54
|
|
|
kwargs.setdefault('axis_labels', axis_labels) |
|
55
|
|
|
super(ImagesFromBytes, self).__init__(data_stream, **kwargs) |
|
56
|
|
|
self.color_mode = color_mode |
|
57
|
|
|
|
|
58
|
|
|
def transform_source_example(self, example, source_name): |
|
59
|
|
|
if PY3: |
|
60
|
|
|
bytes_type = bytes |
|
61
|
|
|
else: |
|
62
|
|
|
bytes_type = str |
|
63
|
|
|
if not isinstance(example, bytes_type): |
|
64
|
|
|
raise TypeError("expected {} object".format(bytes_type.__name__)) |
|
65
|
|
|
pil_image = Image.open(BytesIO(example)) |
|
66
|
|
|
if self.color_mode is not None: |
|
67
|
|
|
pil_image = pil_image.convert(self.color_mode) |
|
68
|
|
|
image = numpy.array(pil_image) |
|
69
|
|
|
if image.ndim == 3: |
|
70
|
|
|
# Transpose to `(channels, height, width)` layout. |
|
71
|
|
|
return image.transpose(2, 0, 1) |
|
72
|
|
|
elif image.ndim == 2: |
|
73
|
|
|
# Add a channels axis of length 1. |
|
74
|
|
|
image = image[numpy.newaxis] |
|
75
|
|
|
else: |
|
76
|
|
|
raise ValueError('unexpected number of axes') |
|
77
|
|
|
return image |
|
78
|
|
|
|
|
79
|
|
|
def transform_source_batch(self, batch, source_name): |
|
80
|
|
|
return [self.transform_source_example(im, source_name) for im in batch] |
|
81
|
|
|
|
|
82
|
|
|
def _make_axis_labels(self, data_stream, which_sources, produces_examples): |
|
83
|
|
|
# This is ugly and probably deserves a refactoring of how we handle |
|
84
|
|
|
# axis labels. It would be simpler to use memoized read-only |
|
85
|
|
|
# properties, but the AbstractDataStream constructor tries to set |
|
86
|
|
|
# self.axis_labels currently. We can't use self.which_sources or |
|
87
|
|
|
# self.produces_examples here, because this *computes* things that |
|
88
|
|
|
# need to be passed into the superclass constructor, necessarily |
|
89
|
|
|
# meaning that the superclass constructor hasn't been called. |
|
90
|
|
|
# Cooperative inheritance is hard, etc. |
|
91
|
|
|
labels = {} |
|
92
|
|
|
for source in data_stream.sources: |
|
93
|
|
|
if source in which_sources: |
|
94
|
|
|
if produces_examples: |
|
95
|
|
|
labels[source] = ('channel', 'height', 'width') |
|
96
|
|
|
else: |
|
97
|
|
|
labels[source] = ('batch', 'channel', 'height', 'width') |
|
98
|
|
|
else: |
|
99
|
|
|
labels[source] = (data_stream.axis_labels[source] |
|
100
|
|
|
if source in data_stream.axis_labels |
|
101
|
|
|
else None) |
|
102
|
|
|
return labels |
|
103
|
|
|
|
|
104
|
|
|
|
|
105
|
|
|
class MinimumImageDimensions(SourcewiseTransformer, ExpectsAxisLabels): |
|
106
|
|
|
"""Resize (lists of) images to minimum dimensions. |
|
107
|
|
|
|
|
108
|
|
|
Parameters |
|
109
|
|
|
---------- |
|
110
|
|
|
data_stream : instance of :class:`AbstractDataStream` |
|
111
|
|
|
The data stream to wrap. |
|
112
|
|
|
minimum_shape : 2-tuple |
|
113
|
|
|
The minimum `(height, width)` dimensions every image must have. |
|
114
|
|
|
Images whose height and width are larger than these dimensions |
|
115
|
|
|
are passed through as-is. |
|
116
|
|
|
resample : str, optional |
|
117
|
|
|
Resampling filter for PIL to use to upsample any images requiring |
|
118
|
|
|
it. Options include 'nearest' (default), 'bilinear', and 'bicubic'. |
|
119
|
|
|
See the PIL documentation for more detailed information. |
|
120
|
|
|
|
|
121
|
|
|
Notes |
|
122
|
|
|
----- |
|
123
|
|
|
This transformer expects stream sources returning individual images, |
|
124
|
|
|
represented as 2- or 3-dimensional arrays, or lists of the same. |
|
125
|
|
|
The format of the stream is unaltered. |
|
126
|
|
|
|
|
127
|
|
|
""" |
|
128
|
|
|
def __init__(self, data_stream, minimum_shape, resample='nearest', |
|
129
|
|
|
**kwargs): |
|
130
|
|
|
self.minimum_shape = minimum_shape |
|
131
|
|
|
try: |
|
132
|
|
|
self.resample = getattr(Image, resample.upper()) |
|
133
|
|
|
except AttributeError: |
|
134
|
|
|
raise ValueError("unknown resampling filter '{}'".format(resample)) |
|
135
|
|
|
kwargs.setdefault('produces_examples', data_stream.produces_examples) |
|
136
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels) |
|
137
|
|
|
super(MinimumImageDimensions, self).__init__(data_stream, **kwargs) |
|
138
|
|
|
|
|
139
|
|
|
def transform_source_batch(self, batch, source_name): |
|
140
|
|
|
self.verify_axis_labels(('batch', 'channel', 'height', 'width'), |
|
141
|
|
|
self.data_stream.axis_labels[source_name], |
|
142
|
|
|
source_name) |
|
143
|
|
|
return [self._example_transform(im, source_name) for im in batch] |
|
144
|
|
|
|
|
145
|
|
|
def transform_source_example(self, example, source_name): |
|
146
|
|
|
self.verify_axis_labels(('channel', 'height', 'width'), |
|
147
|
|
|
self.data_stream.axis_labels[source_name], |
|
148
|
|
|
source_name) |
|
149
|
|
|
return self._example_transform(example, source_name) |
|
150
|
|
|
|
|
151
|
|
|
def _example_transform(self, example, _): |
|
152
|
|
|
if example.ndim > 3 or example.ndim < 2: |
|
153
|
|
|
raise NotImplementedError |
|
154
|
|
|
min_height, min_width = self.minimum_shape |
|
155
|
|
|
original_height, original_width = example.shape[-2:] |
|
156
|
|
|
if original_height < min_height or original_width < min_width: |
|
157
|
|
|
dt = example.dtype |
|
158
|
|
|
# If we're dealing with a colour image, swap around the axes |
|
159
|
|
|
# to be in the format that PIL needs. |
|
160
|
|
|
if example.ndim == 3: |
|
161
|
|
|
im = example.transpose(1, 2, 0) |
|
162
|
|
|
else: |
|
163
|
|
|
im = example |
|
164
|
|
|
im = Image.fromarray(im) |
|
165
|
|
|
width, height = im.size |
|
166
|
|
|
multiplier = max(1, min_width / width, min_height / height) |
|
167
|
|
|
width = int(math.ceil(width * multiplier)) |
|
168
|
|
|
height = int(math.ceil(height * multiplier)) |
|
169
|
|
|
im = numpy.array(im.resize((width, height))).astype(dt) |
|
170
|
|
|
# If necessary, undo the axis swap from earlier. |
|
171
|
|
|
if im.ndim == 3: |
|
172
|
|
|
example = im.transpose(2, 0, 1) |
|
173
|
|
|
else: |
|
174
|
|
|
example = im |
|
175
|
|
|
return example |
|
176
|
|
|
|
|
177
|
|
|
|
|
178
|
|
|
class RandomFixedSizeCrop(SourcewiseTransformer, ExpectsAxisLabels): |
|
179
|
|
|
"""Randomly crop images to a fixed window size. |
|
180
|
|
|
|
|
181
|
|
|
Parameters |
|
182
|
|
|
---------- |
|
183
|
|
|
data_stream : :class:`AbstractDataStream` |
|
184
|
|
|
The data stream to wrap. |
|
185
|
|
|
window_shape : tuple |
|
186
|
|
|
The `(height, width)` tuple representing the size of the output |
|
187
|
|
|
window. |
|
188
|
|
|
|
|
189
|
|
|
Notes |
|
190
|
|
|
----- |
|
191
|
|
|
This transformer expects to act on stream sources which provide one of |
|
192
|
|
|
|
|
193
|
|
|
* Single images represented as 3-dimensional ndarrays, with layout |
|
194
|
|
|
`(channel, height, width)`. |
|
195
|
|
|
* Batches of images represented as lists of 3-dimensional ndarrays, |
|
196
|
|
|
possibly of different shapes (i.e. images of differing |
|
197
|
|
|
heights/widths). |
|
198
|
|
|
* Batches of images represented as 4-dimensional ndarrays, with |
|
199
|
|
|
layout `(batch, channel, height, width)`. |
|
200
|
|
|
|
|
201
|
|
|
The format of the stream will be un-altered, i.e. if lists are |
|
202
|
|
|
yielded by `data_stream` then lists will be yielded by this |
|
203
|
|
|
transformer. |
|
204
|
|
|
|
|
205
|
|
|
""" |
|
206
|
|
|
def __init__(self, data_stream, window_shape, **kwargs): |
|
207
|
|
|
if not window_batch_bchw_available: |
|
208
|
|
|
raise ImportError('window_batch_bchw not compiled') |
|
209
|
|
|
self.window_shape = window_shape |
|
210
|
|
|
self.rng = kwargs.pop('rng', None) |
|
211
|
|
|
self.warned_axis_labels = False |
|
212
|
|
|
if self.rng is None: |
|
213
|
|
|
self.rng = numpy.random.RandomState(config.default_seed) |
|
214
|
|
|
kwargs.setdefault('produces_examples', data_stream.produces_examples) |
|
215
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels) |
|
216
|
|
|
super(RandomFixedSizeCrop, self).__init__(data_stream, **kwargs) |
|
217
|
|
|
|
|
218
|
|
|
def transform_source_batch(self, source, source_name): |
|
219
|
|
|
self.verify_axis_labels(('batch', 'channel', 'height', 'width'), |
|
220
|
|
|
self.data_stream.axis_labels[source_name], |
|
221
|
|
|
source_name) |
|
222
|
|
|
windowed_height, windowed_width = self.window_shape |
|
223
|
|
|
if isinstance(source, numpy.ndarray) and source.ndim == 4: |
|
224
|
|
|
# Hardcoded assumption of (batch, channels, height, width). |
|
225
|
|
|
# This is what the fast Cython code supports. |
|
226
|
|
|
out = numpy.empty(source.shape[:2] + self.window_shape, |
|
227
|
|
|
dtype=source.dtype) |
|
228
|
|
|
batch_size = source.shape[0] |
|
229
|
|
|
image_height, image_width = source.shape[2:] |
|
230
|
|
|
max_h_off = image_height - windowed_height |
|
231
|
|
|
max_w_off = image_width - windowed_width |
|
232
|
|
|
if max_h_off < 0 or max_w_off < 0: |
|
233
|
|
|
raise ValueError("Got ndarray batch with image dimensions {} " |
|
234
|
|
|
"but requested window shape of {}".format( |
|
235
|
|
|
source.shape[2:], self.window_shape)) |
|
236
|
|
|
offsets_w = self.rng.random_integers(0, max_w_off, size=batch_size) |
|
237
|
|
|
offsets_h = self.rng.random_integers(0, max_h_off, size=batch_size) |
|
238
|
|
|
window_batch_bchw(source, offsets_h, offsets_w, out) |
|
239
|
|
|
return out |
|
240
|
|
|
elif all(isinstance(b, numpy.ndarray) and b.ndim == 3 for b in source): |
|
241
|
|
|
return [self.transform_source_example(im, source_name) |
|
242
|
|
|
for im in source] |
|
243
|
|
|
else: |
|
244
|
|
|
raise ValueError("uninterpretable batch format; expected a list " |
|
245
|
|
|
"of arrays with ndim = 3, or an array with " |
|
246
|
|
|
"ndim = 4") |
|
247
|
|
|
|
|
248
|
|
|
def transform_source_example(self, example, source_name): |
|
249
|
|
|
self.verify_axis_labels(('channel', 'height', 'width'), |
|
250
|
|
|
self.data_stream.axis_labels[source_name], |
|
251
|
|
|
source_name) |
|
252
|
|
|
windowed_height, windowed_width = self.window_shape |
|
253
|
|
|
if not isinstance(example, numpy.ndarray) or example.ndim != 3: |
|
254
|
|
|
raise ValueError("uninterpretable example format; expected " |
|
255
|
|
|
"ndarray with ndim = 3") |
|
256
|
|
|
image_height, image_width = example.shape[1:] |
|
257
|
|
|
if image_height < windowed_height or image_width < windowed_width: |
|
258
|
|
|
raise ValueError("can't obtain ({}, {}) window from image " |
|
259
|
|
|
"dimensions ({}, {})".format( |
|
260
|
|
|
windowed_height, windowed_width, |
|
261
|
|
|
image_height, image_width)) |
|
262
|
|
|
if image_height - windowed_height > 0: |
|
263
|
|
|
off_h = self.rng.random_integers(0, image_height - windowed_height) |
|
264
|
|
|
else: |
|
265
|
|
|
off_h = 0 |
|
266
|
|
|
if image_width - windowed_width > 0: |
|
267
|
|
|
off_w = self.rng.random_integers(0, image_width - windowed_width) |
|
268
|
|
|
else: |
|
269
|
|
|
off_w = 0 |
|
270
|
|
|
return example[:, off_h:off_h + windowed_height, |
|
271
|
|
|
off_w:off_w + windowed_width] |
|
272
|
|
|
|
|
273
|
|
|
|
|
274
|
|
|
class Random2DRotation(SourcewiseTransformer, ExpectsAxisLabels): |
|
275
|
|
|
"""Randomly rotate 2D images in the spatial plane. |
|
276
|
|
|
|
|
277
|
|
|
Parameters |
|
278
|
|
|
---------- |
|
279
|
|
|
data_stream : :class:`AbstractDataStream` |
|
280
|
|
|
The data stream to wrap. |
|
281
|
|
|
maximum_rotation : float, default `math.pi` |
|
282
|
|
|
Maximum amount of rotation in radians. The image will be rotated by |
|
283
|
|
|
an angle in the range [-maximum_rotation, maximum_rotation]. |
|
284
|
|
|
resample : str, optional |
|
285
|
|
|
Resampling filter for PIL to use to upsample any images requiring |
|
286
|
|
|
it. Options include 'nearest' (default), 'bilinear', and 'bicubic'. |
|
287
|
|
|
See the PIL documentation for more detailed information. |
|
288
|
|
|
|
|
289
|
|
|
Notes |
|
290
|
|
|
----- |
|
291
|
|
|
This transformer expects to act on stream sources which provide one of |
|
292
|
|
|
|
|
293
|
|
|
* Single images represented as 3-dimensional ndarrays, with layout |
|
294
|
|
|
`(channel, height, width)`. |
|
295
|
|
|
* Batches of images represented as lists of 3-dimensional ndarrays, |
|
296
|
|
|
possibly of different shapes (i.e. images of differing |
|
297
|
|
|
heights/widths). |
|
298
|
|
|
* Batches of images represented as 4-dimensional ndarrays, with |
|
299
|
|
|
layout `(batch, channel, height, width)`. |
|
300
|
|
|
|
|
301
|
|
|
The format of the stream will be un-altered, i.e. if lists are |
|
302
|
|
|
yielded by `data_stream` then lists will be yielded by this |
|
303
|
|
|
transformer. |
|
304
|
|
|
|
|
305
|
|
|
""" |
|
306
|
|
|
def __init__(self, data_stream, maximum_rotation=math.pi, |
|
307
|
|
|
resample='nearest', **kwargs): |
|
308
|
|
|
if maximum_rotation <= 0 or maximum_rotation > math.pi: |
|
309
|
|
|
raise ValueError('maximum_rotation ({:.5f}) must be in the range ' |
|
310
|
|
|
'(0, math.pi]'.format(maximum_rotation)) |
|
311
|
|
|
self.maximum_rotation = numpy.rad2deg(maximum_rotation) |
|
312
|
|
|
try: |
|
313
|
|
|
self.resample = getattr(Image, resample.upper()) |
|
314
|
|
|
except AttributeError: |
|
315
|
|
|
raise ValueError("unknown resampling filter '{}'".format(resample)) |
|
316
|
|
|
|
|
317
|
|
|
self.rng = kwargs.pop('rng', None) |
|
318
|
|
|
self.warned_axis_labels = False |
|
319
|
|
|
if self.rng is None: |
|
320
|
|
|
self.rng = numpy.random.RandomState(config.default_seed) |
|
321
|
|
|
kwargs.setdefault('produces_examples', data_stream.produces_examples) |
|
322
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels) |
|
323
|
|
|
super(Random2DRotation, self).__init__(data_stream, **kwargs) |
|
324
|
|
|
|
|
325
|
|
|
def transform_source_batch(self, source, source_name): |
|
326
|
|
|
self.verify_axis_labels(('batch', 'channel', 'height', 'width'), |
|
327
|
|
|
self.data_stream.axis_labels[source_name], |
|
328
|
|
|
source_name) |
|
329
|
|
|
rotation_angles = self.rng.uniform(-self.maximum_rotation, |
|
330
|
|
|
self.maximum_rotation, |
|
331
|
|
|
len(source)) |
|
332
|
|
|
if isinstance(source, list) and all(isinstance(b, numpy.ndarray) and |
|
333
|
|
|
b.ndim == 3 for b in source): |
|
334
|
|
|
return [self._example_transform(im, angle) |
|
335
|
|
|
for im, angle in zip(source, rotation_angles)] |
|
336
|
|
|
elif isinstance(source, numpy.ndarray) and source.dtype == object and \ |
|
337
|
|
|
all(isinstance(b, numpy.ndarray) and b.ndim == 3 for b in |
|
338
|
|
|
source): |
|
339
|
|
|
out = numpy.empty(len(source), dtype=object) |
|
340
|
|
|
for im_idx, (im, angle) in enumerate(zip(source, rotation_angles)): |
|
341
|
|
|
out[im_idx] = self._example_transform(im, angle) |
|
342
|
|
|
return out |
|
343
|
|
|
elif isinstance(source, numpy.ndarray) and source.ndim == 4: |
|
344
|
|
|
return numpy.array([self._example_transform(im, angle) |
|
345
|
|
|
for im, angle in zip(source, rotation_angles)], |
|
346
|
|
|
dtype=source.dtype) |
|
347
|
|
|
else: |
|
348
|
|
|
raise ValueError("uninterpretable batch format; expected a list " |
|
349
|
|
|
"of arrays with ndim = 3, or an array with " |
|
350
|
|
|
"ndim = 4") |
|
351
|
|
|
|
|
352
|
|
|
def transform_source_example(self, example, source_name): |
|
353
|
|
|
self.verify_axis_labels(('channel', 'height', 'width'), |
|
354
|
|
|
self.data_stream.axis_labels[source_name], |
|
355
|
|
|
source_name) |
|
356
|
|
|
if not isinstance(example, numpy.ndarray) or example.ndim != 3: |
|
357
|
|
|
raise ValueError("uninterpretable example format; expected " |
|
358
|
|
|
"ndarray with ndim = 3") |
|
359
|
|
|
rotation_angle = self.rng.uniform(-self.maximum_rotation, |
|
360
|
|
|
self.maximum_rotation) |
|
361
|
|
|
return self._example_transform(example, rotation_angle) |
|
362
|
|
|
|
|
363
|
|
|
def _example_transform(self, example, rotation_angle): |
|
364
|
|
|
dt = example.dtype |
|
365
|
|
|
im = Image.fromarray(example.transpose(1, 2, 0)) |
|
366
|
|
|
example = numpy.array(im.rotate(rotation_angle, |
|
367
|
|
|
resample=self.resample)).astype(dt) |
|
368
|
|
|
return example.transpose(2, 0, 1) |
|
369
|
|
|
|
Cyclic imports may cause partly loaded modules to be returned. This might lead to unexpected runtime behavior which is hard to debug.