1
|
|
|
from abc import ABCMeta, abstractmethod |
2
|
|
|
from collections import defaultdict |
3
|
|
|
import logging |
4
|
|
|
from multiprocessing import Process, Queue |
5
|
|
|
|
6
|
|
|
import numpy |
7
|
|
|
from picklable_itertools import chain, ifilter, izip |
8
|
|
|
from six import add_metaclass, iteritems |
9
|
|
|
|
10
|
|
|
from fuel import config |
11
|
|
|
from fuel.streams import AbstractDataStream |
12
|
|
|
from fuel.schemes import BatchSizeScheme |
13
|
|
|
from ..exceptions import AxisLabelsMismatchError |
14
|
|
|
|
15
|
|
|
log = logging.getLogger(__name__) |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
class ExpectsAxisLabels(object): |
19
|
|
|
"""Mixin for transformers, used to verify axis labels. |
20
|
|
|
|
21
|
|
|
Notes |
22
|
|
|
----- |
23
|
|
|
Provides a method :meth:`verify_axis_labels` that should be called |
24
|
|
|
with the expected and actual values for an axis labels tuple. If |
25
|
|
|
`actual` is `None`, a warning is logged; if it is non-`None` and does |
26
|
|
|
not match `expected`, a :class:`AxisLabelsMismatchError` is raised. |
27
|
|
|
|
28
|
|
|
The check is only performed on the first call; if the call succeeds, |
29
|
|
|
an attribute is written to skip further checks, in the interest of |
30
|
|
|
speed. |
31
|
|
|
|
32
|
|
|
""" |
33
|
|
|
def verify_axis_labels(self, expected, actual, source_name): |
34
|
|
|
"""Verify that axis labels for a given source are as expected. |
35
|
|
|
|
36
|
|
|
Parameters |
37
|
|
|
---------- |
38
|
|
|
expected : tuple |
39
|
|
|
A tuple of strings representing the expected axis labels. |
40
|
|
|
actual : tuple or None |
41
|
|
|
A tuple of strings representing the actual axis labels, or |
42
|
|
|
`None` if they could not be determined. |
43
|
|
|
source_name : str |
44
|
|
|
The name of the source being checked. Used for caching the |
45
|
|
|
results of checks so that the check is only performed once. |
46
|
|
|
|
47
|
|
|
Notes |
48
|
|
|
----- |
49
|
|
|
Logs a warning in case of `actual=None`, raises an error on |
50
|
|
|
other mismatches. |
51
|
|
|
|
52
|
|
|
""" |
53
|
|
|
if not getattr(self, '_checked_axis_labels', False): |
54
|
|
|
self._checked_axis_labels = defaultdict(bool) |
55
|
|
|
if not self._checked_axis_labels[source_name]: |
56
|
|
|
if actual is None: |
57
|
|
|
log.warning("%s instance could not verify (missing) axis " |
58
|
|
|
"expected %s, got None", |
59
|
|
|
self.__class__.__name__, expected) |
60
|
|
|
else: |
61
|
|
|
if expected != actual: |
62
|
|
|
raise AxisLabelsMismatchError("{} expected axis labels " |
63
|
|
|
"{}, got {} instead".format( |
64
|
|
|
self.__class__.__name__, |
65
|
|
|
expected, actual)) |
66
|
|
|
self._checked_axis_labels[source_name] = True |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
@add_metaclass(ABCMeta) |
70
|
|
|
class Transformer(AbstractDataStream): |
71
|
|
|
"""A data stream that wraps another data stream. |
72
|
|
|
|
73
|
|
|
Subclasses must define a `transform_batch` method (to act on batches), |
74
|
|
|
a `transform_example` method (to act on individual examples), or |
75
|
|
|
both methods. |
76
|
|
|
|
77
|
|
|
Typically (using the interface mentioned above), the transformer |
78
|
|
|
is expected to have the same output type (example or batch) as its |
79
|
|
|
input type. If the transformer subclass is going from batches to |
80
|
|
|
examples or vice versa, it should override `get_data` instead. |
81
|
|
|
Overriding `get_data` is also necessary when access to `request` is |
82
|
|
|
necessary (e.g. for the :class:`Cache` transformer). |
83
|
|
|
|
84
|
|
|
Attributes |
85
|
|
|
---------- |
86
|
|
|
child_epoch_iterator : iterator type |
87
|
|
|
When a new epoch iterator is requested, a new epoch creator is |
88
|
|
|
automatically requested from the wrapped data stream and stored in |
89
|
|
|
this attribute. Use it to access data from the wrapped data stream |
90
|
|
|
by calling ``next(self.child_epoch_iterator)``. |
91
|
|
|
produces_examples : bool |
92
|
|
|
Whether this transformer produces examples (as opposed to batches |
93
|
|
|
of examples). |
94
|
|
|
|
95
|
|
|
""" |
96
|
|
|
def __init__(self, data_stream, produces_examples=None, **kwargs): |
97
|
|
|
super(Transformer, self).__init__(**kwargs) |
98
|
|
|
if produces_examples is not None: |
99
|
|
|
self.produces_examples = produces_examples |
100
|
|
|
self.data_stream = data_stream |
101
|
|
|
|
102
|
|
|
@property |
103
|
|
|
def sources(self): |
104
|
|
|
if hasattr(self, '_sources'): |
105
|
|
|
return self._sources |
106
|
|
|
return self.data_stream.sources |
107
|
|
|
|
108
|
|
|
@sources.setter |
109
|
|
|
def sources(self, value): |
110
|
|
|
self._sources = value |
111
|
|
|
|
112
|
|
|
def close(self): |
113
|
|
|
self.data_stream.close() |
114
|
|
|
|
115
|
|
|
def reset(self): |
116
|
|
|
self.data_stream.reset() |
117
|
|
|
|
118
|
|
|
def next_epoch(self): |
119
|
|
|
self.data_stream.next_epoch() |
120
|
|
|
|
121
|
|
|
def get_epoch_iterator(self, **kwargs): |
122
|
|
|
"""Get an epoch iterator for the wrapped data set. |
123
|
|
|
|
124
|
|
|
Notes |
125
|
|
|
----- |
126
|
|
|
This default implementation assumes that the epochs of the wrapped |
127
|
|
|
data stream are less or equal in length to the original data |
128
|
|
|
stream. Implementations for which this is not true should request |
129
|
|
|
new epoch iterators from the child data set when necessary. |
130
|
|
|
|
131
|
|
|
""" |
132
|
|
|
self.child_epoch_iterator = self.data_stream.get_epoch_iterator() |
133
|
|
|
return super(Transformer, self).get_epoch_iterator(**kwargs) |
134
|
|
|
|
135
|
|
|
def get_data(self, request=None): |
136
|
|
|
if request is not None: |
137
|
|
|
raise ValueError |
138
|
|
|
data = next(self.child_epoch_iterator) |
139
|
|
|
|
140
|
|
|
if self.produces_examples != self.data_stream.produces_examples: |
141
|
|
|
types = {True: 'examples', False: 'batches'} |
142
|
|
|
raise NotImplementedError( |
143
|
|
|
"the wrapped data stream produces {} while the {} transformer " |
144
|
|
|
"produces {}, which it does not support.".format( |
145
|
|
|
types[self.data_stream.produces_examples], |
146
|
|
|
self.__class__.__name__, |
147
|
|
|
types[self.produces_examples])) |
148
|
|
|
elif self.produces_examples: |
149
|
|
|
return self.transform_example(data) |
150
|
|
|
else: |
151
|
|
|
return self.transform_batch(data) |
152
|
|
|
|
153
|
|
|
def transform_example(self, example): |
154
|
|
|
"""Transforms a single example.""" |
155
|
|
|
raise NotImplementedError( |
156
|
|
|
"`{}` does not support examples as input, but the wrapped data " |
157
|
|
|
"stream produces examples.".format(self.__class__.__name__)) |
158
|
|
|
|
159
|
|
|
def transform_batch(self, batch): |
160
|
|
|
"""Transforms a batch of examples.""" |
161
|
|
|
raise NotImplementedError( |
162
|
|
|
"`{}` does not support batches as input, but the wrapped data " |
163
|
|
|
"stream produces batches.".format(self.__class__.__name__)) |
164
|
|
|
|
165
|
|
|
|
166
|
|
|
@add_metaclass(ABCMeta) |
167
|
|
|
class AgnosticTransformer(Transformer): |
168
|
|
|
"""A transformer that operates the same on examples or batches. |
169
|
|
|
|
170
|
|
|
Subclasses must implement the `transform_any` method, which is to be |
171
|
|
|
applied to both examples and batches. This is useful when the example |
172
|
|
|
and batch implementation of a transformation are the same. |
173
|
|
|
|
174
|
|
|
""" |
175
|
|
|
@abstractmethod |
176
|
|
|
def transform_any(self, data): |
177
|
|
|
"""Transforms the input, which can either be an example or a batch.""" |
178
|
|
|
|
179
|
|
|
def transform_example(self, example): |
180
|
|
|
return self.transform_any(example) |
181
|
|
|
|
182
|
|
|
def transform_batch(self, batch): |
183
|
|
|
return self.transform_any(batch) |
184
|
|
|
|
185
|
|
|
|
186
|
|
|
class Mapping(Transformer): |
187
|
|
|
"""Applies a mapping to the data of the wrapped data stream. |
188
|
|
|
|
189
|
|
|
Parameters |
190
|
|
|
---------- |
191
|
|
|
data_stream : instance of :class:`DataStream` |
192
|
|
|
The wrapped data stream. |
193
|
|
|
mapping : callable |
194
|
|
|
The mapping to be applied. |
195
|
|
|
add_sources : tuple of str, optional |
196
|
|
|
When given, the data produced by the mapping is added to original |
197
|
|
|
data under source names `add_sources`. |
198
|
|
|
|
199
|
|
|
""" |
200
|
|
|
def __init__(self, data_stream, mapping, add_sources=None, **kwargs): |
201
|
|
|
super(Mapping, self).__init__( |
202
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
203
|
|
|
self.mapping = mapping |
204
|
|
|
self.add_sources = add_sources |
205
|
|
|
|
206
|
|
|
@property |
207
|
|
|
def sources(self): |
208
|
|
|
return self.data_stream.sources + (self.add_sources |
209
|
|
|
if self.add_sources else ()) |
210
|
|
|
|
211
|
|
|
def get_data(self, request=None): |
212
|
|
|
if request is not None: |
213
|
|
|
raise ValueError |
214
|
|
|
data = next(self.child_epoch_iterator) |
215
|
|
|
image = self.mapping(data) |
216
|
|
|
if not self.add_sources: |
217
|
|
|
return image |
218
|
|
|
return data + image |
219
|
|
|
|
220
|
|
|
|
221
|
|
|
@add_metaclass(ABCMeta) |
222
|
|
|
class SourcewiseTransformer(Transformer): |
223
|
|
|
"""Applies a transformation sourcewise. |
224
|
|
|
|
225
|
|
|
Subclasses must define `transform_source_example` (to transform |
226
|
|
|
examples), `transform_source_batch` (to transform batches) or |
227
|
|
|
both. |
228
|
|
|
|
229
|
|
|
Parameters |
230
|
|
|
---------- |
231
|
|
|
data_stream : instance of :class:`DataStream` |
232
|
|
|
The wrapped data stream. |
233
|
|
|
which_sources : tuple of str, optional |
234
|
|
|
Which sources to apply the mapping to. Defaults to `None`, in |
235
|
|
|
which case the mapping is applied to all sources. |
236
|
|
|
|
237
|
|
|
""" |
238
|
|
|
def __init__(self, data_stream, produces_examples, which_sources=None, |
239
|
|
|
**kwargs): |
240
|
|
|
if which_sources is None: |
241
|
|
|
which_sources = data_stream.sources |
242
|
|
|
self.which_sources = which_sources |
243
|
|
|
super(SourcewiseTransformer, self).__init__( |
244
|
|
|
data_stream, produces_examples, **kwargs) |
245
|
|
|
|
246
|
|
|
def _apply_sourcewise_transformation(self, data, method): |
247
|
|
|
data = list(data) |
248
|
|
|
for i, source_name in enumerate(self.data_stream.sources): |
249
|
|
|
if source_name in self.which_sources: |
250
|
|
|
data[i] = method(data[i], source_name) |
251
|
|
|
return tuple(data) |
252
|
|
|
|
253
|
|
|
def transform_source_example(self, source_example, source_name): |
254
|
|
|
"""Applies a transformation to an example from a source. |
255
|
|
|
|
256
|
|
|
Parameters |
257
|
|
|
---------- |
258
|
|
|
source_example : :class:`numpy.ndarray` |
259
|
|
|
An example from a source. |
260
|
|
|
source_name : str |
261
|
|
|
The name of the source being operated upon. |
262
|
|
|
|
263
|
|
|
""" |
264
|
|
|
raise NotImplementedError( |
265
|
|
|
"`{}` does not support examples as input, but the wrapped data " |
266
|
|
|
"stream produces examples.".format(self.__class__.__name__)) |
267
|
|
|
|
268
|
|
|
def transform_source_batch(self, source_batch, source_name): |
269
|
|
|
"""Applies a transformation to a batch from a source. |
270
|
|
|
|
271
|
|
|
Parameters |
272
|
|
|
---------- |
273
|
|
|
source_batch : :class:`numpy.ndarray` |
274
|
|
|
A batch of examples from a source. |
275
|
|
|
source_name : str |
276
|
|
|
The name of the source being operated upon. |
277
|
|
|
|
278
|
|
|
""" |
279
|
|
|
raise NotImplementedError( |
280
|
|
|
"`{}` does not support batches as input, but the wrapped data " |
281
|
|
|
"stream produces batches.".format(self.__class__.__name__)) |
282
|
|
|
|
283
|
|
|
def transform_example(self, example): |
284
|
|
|
return self._apply_sourcewise_transformation( |
285
|
|
|
data=example, method=self.transform_source_example) |
286
|
|
|
|
287
|
|
|
def transform_batch(self, batch): |
288
|
|
|
return self._apply_sourcewise_transformation( |
289
|
|
|
data=batch, method=self.transform_source_batch) |
290
|
|
|
|
291
|
|
|
|
292
|
|
|
@add_metaclass(ABCMeta) |
293
|
|
|
class AgnosticSourcewiseTransformer(AgnosticTransformer, |
294
|
|
|
SourcewiseTransformer): |
295
|
|
|
"""A sourcewise transformer that operates the same on examples or batches. |
296
|
|
|
|
297
|
|
|
Subclasses must implement the `transform_any_source` method, which is |
298
|
|
|
to be applied to both examples and batches. This is useful when the |
299
|
|
|
example and batch implementation of a sourcewise transformation are |
300
|
|
|
the same. |
301
|
|
|
|
302
|
|
|
""" |
303
|
|
|
def transform_any(self, data): |
304
|
|
|
return self._apply_sourcewise_transformation( |
305
|
|
|
data=data, method=self.transform_any_source) |
306
|
|
|
|
307
|
|
|
@abstractmethod |
308
|
|
|
def transform_any_source(self, source_data, source_name): |
309
|
|
|
"""Applies a transformation to a source. |
310
|
|
|
|
311
|
|
|
The data can either be an example or a batch of examples. |
312
|
|
|
|
313
|
|
|
Parameters |
314
|
|
|
---------- |
315
|
|
|
source_data : :class:`numpy.ndarray` |
316
|
|
|
Data from a source. |
317
|
|
|
source_name : str |
318
|
|
|
The name of the source being operated upon. |
319
|
|
|
|
320
|
|
|
""" |
321
|
|
|
|
322
|
|
|
|
323
|
|
|
class Flatten(SourcewiseTransformer): |
324
|
|
|
"""Flattens selected sources. |
325
|
|
|
|
326
|
|
|
If the wrapped data stream produces batches, they will be flattened |
327
|
|
|
along all but the first axis. |
328
|
|
|
|
329
|
|
|
Incoming sources will be treated as numpy arrays (i.e. using |
330
|
|
|
`numpy.asarray`). |
331
|
|
|
|
332
|
|
|
""" |
333
|
|
|
def __init__(self, data_stream, **kwargs): |
334
|
|
|
# Modify the axis_labels dict to reflect the fact that all non-batch |
335
|
|
|
# axes will be grouped together under the same 'feature' axis. |
336
|
|
|
if data_stream.axis_labels: |
337
|
|
|
which_sources = kwargs.get('which_sources', data_stream.sources) |
338
|
|
|
kwargs.setdefault( |
339
|
|
|
'axis_labels', |
340
|
|
|
self._infer_axis_labels(data_stream, which_sources)) |
341
|
|
|
super(Flatten, self).__init__( |
342
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
343
|
|
|
|
344
|
|
|
def _infer_axis_labels(self, data_stream, which_sources): |
345
|
|
|
axis_labels = {} |
346
|
|
|
for source, labels in iteritems(data_stream.axis_labels): |
347
|
|
|
if source in which_sources: |
348
|
|
|
if not labels: |
349
|
|
|
axis_labels[source] = None |
350
|
|
|
elif data_stream.produces_examples: |
351
|
|
|
axis_labels[source] = ('feature',) |
352
|
|
|
else: |
353
|
|
|
axis_labels[source] = (labels[0], 'feature') |
354
|
|
|
else: |
355
|
|
|
axis_labels[source] = labels |
356
|
|
|
return axis_labels |
357
|
|
|
|
358
|
|
|
def transform_source_example(self, source_example, _): |
359
|
|
|
return numpy.asarray(source_example).flatten() |
360
|
|
|
|
361
|
|
|
def transform_source_batch(self, source_batch, _): |
362
|
|
|
return numpy.asarray(source_batch).reshape((len(source_batch), -1)) |
363
|
|
|
|
364
|
|
|
|
365
|
|
|
class ScaleAndShift(AgnosticSourcewiseTransformer): |
366
|
|
|
"""Scales and shifts selected sources by scalar quantities. |
367
|
|
|
|
368
|
|
|
Incoming sources will be treated as numpy arrays (i.e. using |
369
|
|
|
`numpy.asarray`). |
370
|
|
|
|
371
|
|
|
Parameters |
372
|
|
|
---------- |
373
|
|
|
scale : float |
374
|
|
|
Scaling factor. |
375
|
|
|
shift : float |
376
|
|
|
Shifting factor. |
377
|
|
|
|
378
|
|
|
""" |
379
|
|
|
def __init__(self, data_stream, scale, shift, **kwargs): |
380
|
|
|
self.scale = scale |
381
|
|
|
self.shift = shift |
382
|
|
|
if data_stream.axis_labels: |
383
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
384
|
|
|
super(ScaleAndShift, self).__init__( |
385
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
386
|
|
|
|
387
|
|
|
def transform_any_source(self, source_data, _): |
388
|
|
|
return numpy.asarray(source_data) * self.scale + self.shift |
389
|
|
|
|
390
|
|
|
|
391
|
|
|
class Cast(AgnosticSourcewiseTransformer): |
392
|
|
|
"""Casts selected sources as some dtype. |
393
|
|
|
|
394
|
|
|
Incoming sources will be treated as numpy arrays (i.e. using |
395
|
|
|
`numpy.asarray`). |
396
|
|
|
|
397
|
|
|
Parameters |
398
|
|
|
---------- |
399
|
|
|
dtype : str |
400
|
|
|
Data type to cast to. Can be any valid numpy dtype, or 'floatX', |
401
|
|
|
in which case ``fuel.config.floatX`` is used. |
402
|
|
|
|
403
|
|
|
""" |
404
|
|
|
def __init__(self, data_stream, dtype, **kwargs): |
405
|
|
|
if dtype == 'floatX': |
406
|
|
|
dtype = config.floatX |
407
|
|
|
self.dtype = dtype |
408
|
|
|
if data_stream.axis_labels: |
409
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
410
|
|
|
super(Cast, self).__init__( |
411
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
412
|
|
|
|
413
|
|
|
def transform_any_source(self, source_data, _): |
414
|
|
|
return numpy.asarray(source_data, dtype=self.dtype) |
415
|
|
|
|
416
|
|
|
|
417
|
|
|
class ForceFloatX(AgnosticSourcewiseTransformer): |
418
|
|
|
"""Force all floating point numpy arrays to be floatX.""" |
419
|
|
|
def __init__(self, data_stream, **kwargs): |
420
|
|
|
if data_stream.axis_labels: |
421
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
422
|
|
|
super(ForceFloatX, self).__init__( |
423
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
424
|
|
|
|
425
|
|
|
def transform_any_source(self, source_data, _): |
426
|
|
|
source_needs_casting = (isinstance(source_data, numpy.ndarray) and |
427
|
|
|
source_data.dtype.kind == "f" and |
428
|
|
|
source_data.dtype != config.floatX) |
429
|
|
|
if source_needs_casting: |
430
|
|
|
source_data = source_data.astype(config.floatX) |
431
|
|
|
return source_data |
432
|
|
|
|
433
|
|
|
|
434
|
|
|
class Filter(Transformer): |
435
|
|
|
"""Filters samples that meet a predicate. |
436
|
|
|
|
437
|
|
|
Parameters |
438
|
|
|
---------- |
439
|
|
|
data_stream : instance of :class:`DataStream` |
440
|
|
|
The filtered data stream. |
441
|
|
|
predicate : callable |
442
|
|
|
Should return ``True`` for the samples to be kept. |
443
|
|
|
|
444
|
|
|
""" |
445
|
|
|
def __init__(self, data_stream, predicate, **kwargs): |
446
|
|
|
if data_stream.axis_labels: |
447
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
448
|
|
|
super(Filter, self).__init__( |
449
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
450
|
|
|
self.predicate = predicate |
451
|
|
|
|
452
|
|
|
def get_epoch_iterator(self, **kwargs): |
453
|
|
|
super(Filter, self).get_epoch_iterator(**kwargs) |
454
|
|
|
return ifilter(self.predicate, self.child_epoch_iterator) |
455
|
|
|
|
456
|
|
|
|
457
|
|
|
class Cache(Transformer): |
458
|
|
|
"""Cache examples when sequentially reading a dataset. |
459
|
|
|
|
460
|
|
|
Given a data stream which reads large chunks of data, this data |
461
|
|
|
stream caches these chunks and returns smaller batches from it until |
462
|
|
|
exhausted. |
463
|
|
|
|
464
|
|
|
Parameters |
465
|
|
|
---------- |
466
|
|
|
iteration_scheme : :class:`.IterationScheme` |
467
|
|
|
Note that this iteration scheme must return batch sizes (integers), |
468
|
|
|
which must necessarily be smaller than the child data stream i.e. |
469
|
|
|
the batches returned must be smaller than the cache size. |
470
|
|
|
|
471
|
|
|
Attributes |
472
|
|
|
---------- |
473
|
|
|
cache : list of lists of objects |
474
|
|
|
This attribute holds the cache at any given point. It is a list of |
475
|
|
|
the same size as the :attr:`sources` attribute. Each element in |
476
|
|
|
this list in its turn a list of examples that are currently in the |
477
|
|
|
cache. The cache gets emptied at the start of each epoch, and gets |
478
|
|
|
refilled when needed through the :meth:`get_data` method. |
479
|
|
|
|
480
|
|
|
""" |
481
|
|
|
def __init__(self, data_stream, iteration_scheme, **kwargs): |
482
|
|
|
# Note: produces_examples will always be False because of this |
483
|
|
|
# restriction: the only iteration schemes allowed are BatchSizeScheme, |
484
|
|
|
# which produce batches. |
485
|
|
|
if not isinstance(iteration_scheme, BatchSizeScheme): |
486
|
|
|
raise ValueError('iteration scheme must be an instance of ' |
487
|
|
|
'BatchSizeScheme') |
488
|
|
|
if data_stream.axis_labels: |
489
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
490
|
|
|
super(Cache, self).__init__( |
491
|
|
|
data_stream, iteration_scheme=iteration_scheme, **kwargs) |
492
|
|
|
self.cache = [[] for _ in self.sources] |
493
|
|
|
|
494
|
|
|
def get_data(self, request=None): |
495
|
|
|
if request is None: |
496
|
|
|
raise ValueError |
497
|
|
|
if request > len(self.cache[0]): |
498
|
|
|
self._cache() |
499
|
|
|
data = [] |
500
|
|
|
for i, cache in enumerate(self.cache): |
501
|
|
|
data.append(numpy.asarray(cache[:request])) |
502
|
|
|
self.cache[i] = cache[request:] |
503
|
|
|
return tuple(data) |
504
|
|
|
|
505
|
|
|
def get_epoch_iterator(self, **kwargs): |
506
|
|
|
self.cache = [[] for _ in self.sources] |
507
|
|
|
return super(Cache, self).get_epoch_iterator(**kwargs) |
508
|
|
|
|
509
|
|
|
def _cache(self): |
510
|
|
|
try: |
511
|
|
|
for cache, data in zip(self.cache, |
512
|
|
|
next(self.child_epoch_iterator)): |
513
|
|
|
cache.extend(data) |
514
|
|
|
except StopIteration: |
515
|
|
|
if not self.cache[0]: |
516
|
|
|
raise |
517
|
|
|
|
518
|
|
|
|
519
|
|
|
class SortMapping(object): |
520
|
|
|
"""Callable class for creating sorting mappings. |
521
|
|
|
|
522
|
|
|
This class can be used to create a callable that can be used by the |
523
|
|
|
:class:`Mapping` constructor. |
524
|
|
|
|
525
|
|
|
Parameters |
526
|
|
|
---------- |
527
|
|
|
key : callable |
528
|
|
|
The mapping that returns the value to sort on. Its input will be |
529
|
|
|
a tuple that contains a single data point for each source. |
530
|
|
|
reverse : boolean value that indicates whether the sort order should |
531
|
|
|
be reversed. |
532
|
|
|
|
533
|
|
|
""" |
534
|
|
|
def __init__(self, key, reverse=False): |
535
|
|
|
self.key = key |
536
|
|
|
self.reverse = reverse |
537
|
|
|
|
538
|
|
|
def __call__(self, batch): |
539
|
|
|
output = sorted(zip(*batch), key=self.key, reverse=self.reverse) |
540
|
|
|
output = tuple(numpy.asarray(i) if isinstance(j, numpy.ndarray) |
541
|
|
|
else list(i) |
542
|
|
|
for i, j in zip(zip(*output), batch)) |
543
|
|
|
return output |
544
|
|
|
|
545
|
|
|
|
546
|
|
|
class Batch(Transformer): |
547
|
|
|
"""Creates minibatches from data streams providing single examples. |
548
|
|
|
|
549
|
|
|
Some datasets only return one example at at time e.g. when reading text |
550
|
|
|
files a line at a time. This wrapper reads several examples |
551
|
|
|
sequentially to turn those into minibatches. |
552
|
|
|
|
553
|
|
|
Parameters |
554
|
|
|
---------- |
555
|
|
|
data_stream : :class:`AbstractDataStream` instance |
556
|
|
|
The data stream to wrap. |
557
|
|
|
iteration_scheme : :class:`.BatchSizeScheme` instance |
558
|
|
|
The iteration scheme to use; should return integers representing |
559
|
|
|
the size of the batch to return. |
560
|
|
|
strictness : int, optional |
561
|
|
|
How strictly the iterator should adhere to the batch size. By |
562
|
|
|
default, the value 0 means that the last batch is returned |
563
|
|
|
regardless of its size, so it can be smaller than what is actually |
564
|
|
|
requested. At level 1, the last batch is discarded if it is not of |
565
|
|
|
the correct size. At the highest strictness level, 2, an error is |
566
|
|
|
raised if a batch of the requested size cannot be provided. |
567
|
|
|
|
568
|
|
|
""" |
569
|
|
|
def __init__(self, data_stream, iteration_scheme, strictness=0, **kwargs): |
570
|
|
|
if not data_stream.produces_examples: |
571
|
|
|
raise ValueError('the wrapped data stream must produce examples, ' |
572
|
|
|
'not batches of examples.') |
573
|
|
|
# The value for `produces_examples` is inferred from the iteration |
574
|
|
|
# scheme's `requests_examples` attribute. We expect the scheme to |
575
|
|
|
# request batches. |
576
|
|
|
if iteration_scheme.requests_examples: |
577
|
|
|
raise ValueError('the iteration scheme must request batches, ' |
578
|
|
|
'not individual examples.') |
579
|
|
|
if data_stream.axis_labels: |
580
|
|
|
kwargs.setdefault( |
581
|
|
|
'axis_labels', |
582
|
|
|
dict((source, ('batch',) + labels if labels else None) for |
583
|
|
|
source, labels in iteritems(data_stream.axis_labels))) |
584
|
|
|
super(Batch, self).__init__( |
585
|
|
|
data_stream, iteration_scheme=iteration_scheme, **kwargs) |
586
|
|
|
self.strictness = strictness |
587
|
|
|
|
588
|
|
|
def get_data(self, request=None): |
589
|
|
|
"""Get data from the dataset.""" |
590
|
|
|
if request is None: |
591
|
|
|
raise ValueError |
592
|
|
|
data = [[] for _ in self.sources] |
593
|
|
|
for i in range(request): |
594
|
|
|
try: |
595
|
|
|
for source_data, example in zip( |
596
|
|
|
data, next(self.child_epoch_iterator)): |
597
|
|
|
source_data.append(example) |
598
|
|
|
except StopIteration: |
599
|
|
|
# If some data has been extracted and `strict` is not set, |
600
|
|
|
# we should spit out this data before stopping iteration. |
601
|
|
|
if not self.strictness and data[0]: |
602
|
|
|
break |
603
|
|
|
elif self.strictness > 1 and data[0]: |
604
|
|
|
raise ValueError |
605
|
|
|
raise |
606
|
|
|
return tuple(numpy.asarray(source_data) for source_data in data) |
607
|
|
|
|
608
|
|
|
|
609
|
|
|
class Unpack(Transformer): |
610
|
|
|
"""Unpacks batches to compose a stream of examples. |
611
|
|
|
|
612
|
|
|
This class is the inverse of the Batch class: it turns a minibatch into |
613
|
|
|
a stream of examples. |
614
|
|
|
|
615
|
|
|
Parameters |
616
|
|
|
---------- |
617
|
|
|
data_stream : :class:`AbstractDataStream` instance |
618
|
|
|
The data stream to unpack |
619
|
|
|
|
620
|
|
|
""" |
621
|
|
|
def __init__(self, data_stream, **kwargs): |
622
|
|
|
if data_stream.produces_examples: |
623
|
|
|
raise ValueError('the wrapped data stream must produce batches of ' |
624
|
|
|
'examples, not examples') |
625
|
|
|
if data_stream.axis_labels: |
626
|
|
|
kwargs.setdefault( |
627
|
|
|
'axis_labels', |
628
|
|
|
dict((source, labels[1:] if labels else None) for |
629
|
|
|
source, labels in iteritems(data_stream.axis_labels))) |
630
|
|
|
super(Unpack, self).__init__( |
631
|
|
|
data_stream, produces_examples=True, **kwargs) |
632
|
|
|
self.data = None |
633
|
|
|
|
634
|
|
|
def get_data(self, request=None): |
635
|
|
|
if request is not None: |
636
|
|
|
raise ValueError |
637
|
|
|
if not self.data: |
638
|
|
|
data = next(self.child_epoch_iterator) |
639
|
|
|
self.data = izip(*data) |
640
|
|
|
try: |
641
|
|
|
return next(self.data) |
642
|
|
|
except StopIteration: |
643
|
|
|
self.data = None |
644
|
|
|
return self.get_data() |
645
|
|
|
|
646
|
|
|
|
647
|
|
|
class Padding(Transformer): |
648
|
|
|
"""Adds padding to variable-length sequences. |
649
|
|
|
|
650
|
|
|
When your batches consist of variable-length sequences, use this class |
651
|
|
|
to equalize lengths by adding zero-padding. To distinguish between |
652
|
|
|
data and padding masks can be produced. For each data source that is |
653
|
|
|
masked, a new source will be added. This source will have the name of |
654
|
|
|
the original source with the suffix ``_mask`` (e.g. ``features_mask``). |
655
|
|
|
|
656
|
|
|
Elements of incoming batches will be treated as numpy arrays (i.e. |
657
|
|
|
using `numpy.asarray`). If they have more than one dimension, |
658
|
|
|
all dimensions except length, that is the first one, must be equal. |
659
|
|
|
|
660
|
|
|
Parameters |
661
|
|
|
---------- |
662
|
|
|
data_stream : :class:`AbstractDataStream` instance |
663
|
|
|
The data stream to wrap |
664
|
|
|
mask_sources : tuple of strings, optional |
665
|
|
|
The sources for which we need to add a mask. If not provided, a |
666
|
|
|
mask will be created for all data sources |
667
|
|
|
mask_dtype: str, optional |
668
|
|
|
data type of masks. If not provided, floatX from config will |
669
|
|
|
be used. |
670
|
|
|
|
671
|
|
|
""" |
672
|
|
|
def __init__(self, data_stream, mask_sources=None, mask_dtype=None, |
673
|
|
|
**kwargs): |
674
|
|
|
if data_stream.produces_examples: |
675
|
|
|
raise ValueError('the wrapped data stream must produce batches of ' |
676
|
|
|
'examples, not examples') |
677
|
|
|
super(Padding, self).__init__( |
678
|
|
|
data_stream, produces_examples=False, **kwargs) |
679
|
|
|
if mask_sources is None: |
680
|
|
|
mask_sources = self.data_stream.sources |
681
|
|
|
self.mask_sources = mask_sources |
682
|
|
|
if mask_dtype is None: |
683
|
|
|
self.mask_dtype = config.floatX |
684
|
|
|
else: |
685
|
|
|
self.mask_dtype = mask_dtype |
686
|
|
|
|
687
|
|
|
@property |
688
|
|
|
def sources(self): |
689
|
|
|
sources = [] |
690
|
|
|
for source in self.data_stream.sources: |
691
|
|
|
sources.append(source) |
692
|
|
|
if source in self.mask_sources: |
693
|
|
|
sources.append(source + '_mask') |
694
|
|
|
return tuple(sources) |
695
|
|
|
|
696
|
|
|
def transform_batch(self, batch): |
697
|
|
|
batch_with_masks = [] |
698
|
|
|
for i, (source, source_batch) in enumerate( |
699
|
|
|
zip(self.data_stream.sources, batch)): |
700
|
|
|
if source not in self.mask_sources: |
701
|
|
|
batch_with_masks.append(source_batch) |
702
|
|
|
continue |
703
|
|
|
|
704
|
|
|
shapes = [numpy.asarray(sample).shape for sample in source_batch] |
705
|
|
|
lengths = [shape[0] for shape in shapes] |
706
|
|
|
max_sequence_length = max(lengths) |
707
|
|
|
rest_shape = shapes[0][1:] |
708
|
|
|
if not all([shape[1:] == rest_shape for shape in shapes]): |
709
|
|
|
raise ValueError("All dimensions except length must be equal") |
710
|
|
|
dtype = numpy.asarray(source_batch[0]).dtype |
711
|
|
|
|
712
|
|
|
padded_batch = numpy.zeros( |
713
|
|
|
(len(source_batch), max_sequence_length) + rest_shape, |
714
|
|
|
dtype=dtype) |
715
|
|
|
for i, sample in enumerate(source_batch): |
716
|
|
|
padded_batch[i, :len(sample)] = sample |
717
|
|
|
batch_with_masks.append(padded_batch) |
718
|
|
|
|
719
|
|
|
mask = numpy.zeros((len(source_batch), max_sequence_length), |
720
|
|
|
self.mask_dtype) |
721
|
|
|
for i, sequence_length in enumerate(lengths): |
722
|
|
|
mask[i, :sequence_length] = 1 |
723
|
|
|
batch_with_masks.append(mask) |
724
|
|
|
return tuple(batch_with_masks) |
725
|
|
|
|
726
|
|
|
|
727
|
|
|
class Merge(AbstractDataStream): |
728
|
|
|
"""Merges several datastreams into a single one. |
729
|
|
|
|
730
|
|
|
Parameters |
731
|
|
|
---------- |
732
|
|
|
data_streams : iterable |
733
|
|
|
The data streams to merge. |
734
|
|
|
sources : iterable |
735
|
|
|
A collection of strings, determining what sources should be called. |
736
|
|
|
|
737
|
|
|
Examples |
738
|
|
|
-------- |
739
|
|
|
>>> from fuel.datasets import IterableDataset |
740
|
|
|
>>> english = IterableDataset(['Hello world!']) |
741
|
|
|
>>> french = IterableDataset(['Bonjour le monde!']) |
742
|
|
|
>>> from fuel.streams import DataStream |
743
|
|
|
>>> streams = (DataStream(english), |
744
|
|
|
... DataStream(french)) |
745
|
|
|
>>> merged_stream = Merge(streams, ('english', 'french')) |
746
|
|
|
>>> merged_stream.sources |
747
|
|
|
('english', 'french') |
748
|
|
|
>>> next(merged_stream.get_epoch_iterator()) |
749
|
|
|
('Hello world!', 'Bonjour le monde!') |
750
|
|
|
|
751
|
|
|
""" |
752
|
|
|
def __init__(self, data_streams, sources, axis_labels=None): |
753
|
|
|
super(Merge, self).__init__( |
754
|
|
|
iteration_scheme=None, axis_labels=axis_labels) |
755
|
|
|
if not all(data_stream.produces_examples == |
756
|
|
|
data_streams[0].produces_examples |
757
|
|
|
for data_stream in data_streams): |
758
|
|
|
raise ValueError('all data streams must produce the same type of ' |
759
|
|
|
'output (batches or examples)') |
760
|
|
|
self.data_streams = data_streams |
761
|
|
|
self.produces_examples = self.data_streams[0].produces_examples |
762
|
|
|
|
763
|
|
|
if len(list(chain(*[data_stream.sources for data_stream |
764
|
|
|
in data_streams]))) != len(sources): |
765
|
|
|
raise ValueError("wrong number of sources given") |
766
|
|
|
self.sources = sources |
767
|
|
|
|
768
|
|
|
def close(self): |
769
|
|
|
for data_stream in self.data_streams: |
770
|
|
|
data_stream.close() |
771
|
|
|
|
772
|
|
|
def reset(self): |
773
|
|
|
for data_stream in self.data_streams: |
774
|
|
|
data_stream.reset() |
775
|
|
|
|
776
|
|
|
def next_epoch(self): |
777
|
|
|
for data_stream in self.data_streams: |
778
|
|
|
data_stream.next_epoch() |
779
|
|
|
|
780
|
|
|
def get_epoch_iterator(self, **kwargs): |
781
|
|
|
self.child_epoch_iterators = [data_stream.get_epoch_iterator() |
782
|
|
|
for data_stream in self.data_streams] |
783
|
|
|
return super(Merge, self).get_epoch_iterator(**kwargs) |
784
|
|
|
|
785
|
|
|
def get_data(self, request=None): |
786
|
|
|
if request is not None: |
787
|
|
|
raise ValueError |
788
|
|
|
result = [] |
789
|
|
|
for child_epoch_iterator in self.child_epoch_iterators: |
790
|
|
|
result.extend(next(child_epoch_iterator)) |
791
|
|
|
return tuple(result) |
792
|
|
|
|
793
|
|
|
|
794
|
|
|
class BackgroundProcess(object): |
795
|
|
|
"""A background process that reads batches and stores them in a queue. |
796
|
|
|
|
797
|
|
|
The :meth:`main` method needs to be called in order to start reading |
798
|
|
|
batches into the queue. Note that this process will run infinitely; |
799
|
|
|
start it as a :attr:`~multiprocessing.Process.daemon` to make sure it |
800
|
|
|
will get killed when the main process exits. |
801
|
|
|
|
802
|
|
|
Parameters |
803
|
|
|
---------- |
804
|
|
|
data_stream : :class:`.DataStream` or :class:`Transformer` |
805
|
|
|
The data stream from which to read batches. |
806
|
|
|
max_batches : int |
807
|
|
|
The maximum number of batches to store in the queue. If reached, |
808
|
|
|
the process wil block until a batch is popped from the queue. |
809
|
|
|
|
810
|
|
|
""" |
811
|
|
|
def __init__(self, data_stream, max_batches): |
812
|
|
|
self.data_stream = data_stream |
813
|
|
|
self.batches = Queue(max_batches) |
814
|
|
|
self.run_background = True |
815
|
|
|
|
816
|
|
|
def main(self): |
817
|
|
|
while True: |
818
|
|
|
iterator = self.data_stream.get_epoch_iterator() |
819
|
|
|
for batch in iterator: |
820
|
|
|
self.batches.put(batch) |
821
|
|
|
self.batches.put(StopIteration) |
822
|
|
|
|
823
|
|
|
def get_next_data(self): |
824
|
|
|
return self.batches.get() |
825
|
|
|
|
826
|
|
|
|
827
|
|
|
class MultiProcessing(Transformer): |
828
|
|
|
"""Cache batches from the stream in a separate process. |
829
|
|
|
|
830
|
|
|
To speed up training of your model, it can be worthwhile to load and |
831
|
|
|
process data in separate process. This is a simple implementation of |
832
|
|
|
such an approach that makes use of Python's :mod:`multiprocessing` |
833
|
|
|
module. |
834
|
|
|
|
835
|
|
|
Parameters |
836
|
|
|
---------- |
837
|
|
|
data_stream : :class:`DataStream` or :class:`Transformer` |
838
|
|
|
The data stream to read batches from in the separate process. |
839
|
|
|
max_store : int, optional |
840
|
|
|
The maximum number of batches to keep in the queue. |
841
|
|
|
|
842
|
|
|
Notes |
843
|
|
|
----- |
844
|
|
|
This approach incurs an overhead from the need to serialize batches in |
845
|
|
|
order to send them to the main process. This should be acceptable if |
846
|
|
|
your model's training calls take significantly longer than reading a |
847
|
|
|
batch of data does, but for fast models or slow data pipelines a more |
848
|
|
|
robust approach might need to be considered. |
849
|
|
|
|
850
|
|
|
""" |
851
|
|
|
def __init__(self, data_stream, max_store=100, **kwargs): |
852
|
|
|
if data_stream.axis_labels: |
853
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
854
|
|
|
super(MultiProcessing, self).__init__( |
855
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
856
|
|
|
self.background = BackgroundProcess(data_stream, max_store) |
857
|
|
|
self.proc = Process(target=self.background.main) |
858
|
|
|
self.proc.daemon = True |
859
|
|
|
self.proc.start() |
860
|
|
|
|
861
|
|
|
def get_data(self, request=None): |
862
|
|
|
if request is not None: |
863
|
|
|
raise ValueError |
864
|
|
|
data = self.background.get_next_data() |
865
|
|
|
if data == StopIteration: |
866
|
|
|
raise StopIteration |
867
|
|
|
return data |
868
|
|
|
|
869
|
|
|
|
870
|
|
|
class Rename(AgnosticTransformer): |
871
|
|
|
"""Renames the sources of the stream. |
872
|
|
|
|
873
|
|
|
Parameters |
874
|
|
|
---------- |
875
|
|
|
data_stream : :class:`DataStream` or :class:`Transformer`. |
876
|
|
|
The data stream. |
877
|
|
|
names : dict |
878
|
|
|
A dictionary mapping the old and new names of the sources |
879
|
|
|
to rename. |
880
|
|
|
|
881
|
|
|
""" |
882
|
|
|
def __init__(self, data_stream, names, **kwargs): |
883
|
|
|
sources = list(data_stream.sources) |
884
|
|
|
for old, new in iteritems(names): |
885
|
|
|
if old not in sources: |
886
|
|
|
raise KeyError("%s not in the sources of the stream" % old) |
887
|
|
|
else: |
888
|
|
|
sources[sources.index(old)] = new |
889
|
|
|
self.sources = tuple(sources) |
890
|
|
|
if data_stream.axis_labels: |
891
|
|
|
kwargs.setdefault( |
892
|
|
|
'axis_labels', |
893
|
|
|
dict((names[source] if source in names else source, labels) |
894
|
|
|
for (source, labels) in |
895
|
|
|
iteritems(data_stream.axis_labels))) |
896
|
|
|
super(Rename, self).__init__( |
897
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
898
|
|
|
|
899
|
|
|
def transform_any(self, data): |
900
|
|
|
return data |
901
|
|
|
|
902
|
|
|
|
903
|
|
|
class FilterSources(AgnosticTransformer): |
904
|
|
|
"""Selects a subset of the stream sources. |
905
|
|
|
|
906
|
|
|
Order of data stream's sources is maintained. The order of sources |
907
|
|
|
given as parameter to FilterSources does not matter. |
908
|
|
|
|
909
|
|
|
Parameters |
910
|
|
|
---------- |
911
|
|
|
data_stream : :class:`AbstractDataStream` or :class:`Transformer`. |
912
|
|
|
The data stream. |
913
|
|
|
sources : tuple of strings |
914
|
|
|
The names of the data sources returned by this transformer. |
915
|
|
|
Must be a subset of the sources given by the stream. |
916
|
|
|
|
917
|
|
|
""" |
918
|
|
|
def __init__(self, data_stream, sources, **kwargs): |
919
|
|
|
if any(source not in data_stream.sources for source in sources): |
920
|
|
|
raise ValueError("sources must all be contained in " |
921
|
|
|
"data_stream.sources") |
922
|
|
|
if data_stream.axis_labels: |
923
|
|
|
kwargs.setdefault('axis_labels', |
924
|
|
|
dict((source, labels) for (source, labels) |
925
|
|
|
in iteritems(data_stream.axis_labels) |
926
|
|
|
if source in sources)) |
927
|
|
|
super(FilterSources, self).__init__( |
928
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
929
|
|
|
|
930
|
|
|
# keep order of data_stream.sources |
931
|
|
|
self.sources = tuple(s for s in data_stream.sources if s in sources) |
932
|
|
|
|
933
|
|
|
def transform_any(self, data): |
934
|
|
|
return [d for d, s in izip(data, self.data_stream.sources) |
935
|
|
|
if s in self.sources] |
936
|
|
|
|