|
1
|
|
|
from abc import ABCMeta, abstractmethod |
|
2
|
|
|
|
|
3
|
|
|
import zmq |
|
4
|
|
|
from six import add_metaclass, iteritems |
|
5
|
|
|
|
|
6
|
|
|
from fuel.iterator import DataIterator |
|
7
|
|
|
from fuel.server import recv_arrays |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
@add_metaclass(ABCMeta) |
|
11
|
|
|
class AbstractDataStream(object): |
|
12
|
|
|
"""A stream of data separated into epochs. |
|
13
|
|
|
|
|
14
|
|
|
A data stream is an iterable stream of examples/minibatches. It shares |
|
15
|
|
|
similarities with Python file handles return by the ``open`` method. |
|
16
|
|
|
Data streams can be closed using the :meth:`close` method and reset |
|
17
|
|
|
using :meth:`reset` (similar to ``f.seek(0)``). |
|
18
|
|
|
|
|
19
|
|
|
Parameters |
|
20
|
|
|
---------- |
|
21
|
|
|
iteration_scheme : :class:`.IterationScheme`, optional |
|
22
|
|
|
The iteration scheme to use when retrieving data. Note that not all |
|
23
|
|
|
datasets support the same iteration schemes, some datasets require |
|
24
|
|
|
one, and others don't support any. In case when the data stream |
|
25
|
|
|
wraps another data stream, the choice of supported iteration |
|
26
|
|
|
schemes is typically even more limited. Be sure to read the |
|
27
|
|
|
documentation of the dataset or data stream in question. |
|
28
|
|
|
axis_labels : dict, optional |
|
29
|
|
|
Maps source names to tuples of strings describing axis semantics, |
|
30
|
|
|
one per axis. Defaults to `None`, i.e. no information is available. |
|
31
|
|
|
|
|
32
|
|
|
Attributes |
|
33
|
|
|
---------- |
|
34
|
|
|
iteration_scheme : :class:`.IterationScheme` |
|
35
|
|
|
The iteration scheme used to retrieve data. Can be ``None`` when |
|
36
|
|
|
not used. |
|
37
|
|
|
sources : tuple of strings |
|
38
|
|
|
The names of the data sources returned by this data stream, as |
|
39
|
|
|
given by the dataset. |
|
40
|
|
|
produces_examples : bool |
|
41
|
|
|
Whether this data stream produces examples (as opposed to batches |
|
42
|
|
|
of examples). |
|
43
|
|
|
|
|
44
|
|
|
""" |
|
45
|
|
|
def __init__(self, iteration_scheme=None, axis_labels=None): |
|
46
|
|
|
self.iteration_scheme = iteration_scheme |
|
47
|
|
|
self.axis_labels = axis_labels |
|
48
|
|
|
|
|
49
|
|
|
@property |
|
50
|
|
|
def produces_examples(self): |
|
51
|
|
|
if self.iteration_scheme: |
|
52
|
|
|
return self.iteration_scheme.requests_examples |
|
53
|
|
|
elif not hasattr(self, '_produces_examples'): |
|
54
|
|
|
raise ValueError("cannot infer type of stream for {} instance; " |
|
55
|
|
|
"set the produces_examples attribute to True " |
|
56
|
|
|
"(for example streams) or False (for batch " |
|
57
|
|
|
"streams).".format(self.__class__.__name__)) |
|
58
|
|
|
else: |
|
59
|
|
|
return self._produces_examples |
|
60
|
|
|
|
|
61
|
|
|
@produces_examples.setter |
|
62
|
|
|
def produces_examples(self, value): |
|
63
|
|
|
if self.iteration_scheme: |
|
64
|
|
|
raise ValueError("cannot set produces_examples on {} instance; " |
|
65
|
|
|
"determined by iteration scheme {}".format( |
|
66
|
|
|
self.__class__.__name__, |
|
67
|
|
|
self.iteration_scheme)) |
|
68
|
|
|
self._produces_examples = value |
|
69
|
|
|
|
|
70
|
|
|
@abstractmethod |
|
71
|
|
|
def get_data(self, request=None): |
|
72
|
|
|
"""Request data from the dataset or the wrapped stream. |
|
73
|
|
|
|
|
74
|
|
|
Parameters |
|
75
|
|
|
---------- |
|
76
|
|
|
request : object |
|
77
|
|
|
A request fetched from the `request_iterator`. |
|
78
|
|
|
|
|
79
|
|
|
""" |
|
80
|
|
|
|
|
81
|
|
|
@abstractmethod |
|
82
|
|
|
def reset(self): |
|
83
|
|
|
"""Reset the data stream.""" |
|
84
|
|
|
|
|
85
|
|
|
@abstractmethod |
|
86
|
|
|
def close(self): |
|
87
|
|
|
"""Gracefully close the data stream, e.g. releasing file handles.""" |
|
88
|
|
|
|
|
89
|
|
|
@abstractmethod |
|
90
|
|
|
def next_epoch(self): |
|
91
|
|
|
"""Switch the data stream to the next epoch.""" |
|
92
|
|
|
|
|
93
|
|
|
@abstractmethod |
|
94
|
|
|
def get_epoch_iterator(self, as_dict=False): |
|
95
|
|
|
return DataIterator(self, self.iteration_scheme.get_request_iterator() |
|
96
|
|
|
if self.iteration_scheme else None, |
|
97
|
|
|
as_dict=as_dict) |
|
98
|
|
|
|
|
99
|
|
|
def iterate_epochs(self, as_dict=False): |
|
100
|
|
|
"""Allow iteration through all epochs. |
|
101
|
|
|
|
|
102
|
|
|
Notes |
|
103
|
|
|
----- |
|
104
|
|
|
This method uses the :meth:`get_epoch_iterator` method to retrieve |
|
105
|
|
|
the :class:`DataIterator` for each epoch. The default |
|
106
|
|
|
implementation of this method resets the state of the data stream |
|
107
|
|
|
so that the new epoch can read the data from the beginning. |
|
108
|
|
|
However, this behavior only works as long as the ``epochs`` |
|
109
|
|
|
property is iterated over using e.g. ``for epoch in |
|
110
|
|
|
stream.epochs``. If you create the data iterators in advance (e.g. |
|
111
|
|
|
using ``for i, epoch in zip(range(10), stream.epochs`` in legacy |
|
112
|
|
|
Python) you must call the :meth:`reset` method yourself. |
|
113
|
|
|
|
|
114
|
|
|
""" |
|
115
|
|
|
while True: |
|
116
|
|
|
yield self.get_epoch_iterator(as_dict=as_dict) |
|
117
|
|
|
|
|
118
|
|
|
|
|
119
|
|
|
class DataStream(AbstractDataStream): |
|
120
|
|
|
"""A stream of data from a dataset. |
|
121
|
|
|
|
|
122
|
|
|
Parameters |
|
123
|
|
|
---------- |
|
124
|
|
|
dataset : instance of :class:`Dataset` |
|
125
|
|
|
The dataset from which the data is fetched. |
|
126
|
|
|
|
|
127
|
|
|
""" |
|
128
|
|
|
def __init__(self, dataset, **kwargs): |
|
129
|
|
|
if dataset.axis_labels: |
|
130
|
|
|
kwargs.setdefault('axis_labels', dataset.axis_labels.copy()) |
|
131
|
|
|
super(DataStream, self).__init__(**kwargs) |
|
132
|
|
|
# A DataStream with no iteration scheme is considered an example stream |
|
133
|
|
|
# by default |
|
134
|
|
|
if not self.iteration_scheme: |
|
135
|
|
|
self.produces_examples = True |
|
136
|
|
|
# If the data stream produces examples, remove 'batch' from axis labels |
|
137
|
|
|
if self.produces_examples and self.axis_labels: |
|
138
|
|
|
for source, labels in iteritems(self.axis_labels): |
|
139
|
|
|
self.axis_labels[source] = tuple( |
|
140
|
|
|
label for label in labels if label != 'batch') |
|
141
|
|
|
self.dataset = dataset |
|
142
|
|
|
self.data_state = self.dataset.open() |
|
143
|
|
|
self._fresh_state = True |
|
144
|
|
|
|
|
145
|
|
|
@property |
|
146
|
|
|
def sources(self): |
|
147
|
|
|
if hasattr(self, '_sources'): |
|
148
|
|
|
return self._sources |
|
149
|
|
|
return self.dataset.sources |
|
150
|
|
|
|
|
151
|
|
|
@sources.setter |
|
152
|
|
|
def sources(self, value): |
|
153
|
|
|
self._sources = value |
|
154
|
|
|
|
|
155
|
|
|
def close(self): |
|
156
|
|
|
self.data_state = self.dataset.close(self.data_state) |
|
157
|
|
|
|
|
158
|
|
|
def reset(self): |
|
159
|
|
|
self.data_state = self.dataset.reset(self.data_state) |
|
160
|
|
|
self._fresh_state = True |
|
161
|
|
|
|
|
162
|
|
|
def next_epoch(self): |
|
163
|
|
|
self.data_state = self.dataset.next_epoch(self.data_state) |
|
164
|
|
|
|
|
165
|
|
|
def get_data(self, request=None): |
|
166
|
|
|
"""Get data from the dataset.""" |
|
167
|
|
|
return self.dataset.get_data(self.data_state, request) |
|
168
|
|
|
|
|
169
|
|
|
def get_epoch_iterator(self, **kwargs): |
|
170
|
|
|
"""Get an epoch iterator for the data stream.""" |
|
171
|
|
|
if not self._fresh_state: |
|
172
|
|
|
self.next_epoch() |
|
173
|
|
|
else: |
|
174
|
|
|
self._fresh_state = False |
|
175
|
|
|
return super(DataStream, self).get_epoch_iterator(**kwargs) |
|
176
|
|
|
|
|
177
|
|
|
@classmethod |
|
178
|
|
|
def default_stream(cls, dataset, **kwargs): |
|
179
|
|
|
data_stream = cls(dataset, **kwargs) |
|
180
|
|
|
return dataset.apply_default_transformers(data_stream) |
|
181
|
|
|
|
|
182
|
|
|
|
|
183
|
|
|
class ServerDataStream(AbstractDataStream): |
|
184
|
|
|
"""A data stream that receives batches from a Fuel server. |
|
185
|
|
|
|
|
186
|
|
|
Parameters |
|
187
|
|
|
---------- |
|
188
|
|
|
sources : tuple of strings |
|
189
|
|
|
The names of the data sources returned by this data stream. |
|
190
|
|
|
produces_examples : bool |
|
191
|
|
|
Whether this data stream produces examples (as opposed to batches |
|
192
|
|
|
of examples). |
|
193
|
|
|
host : str, optional |
|
194
|
|
|
The host to connect to. Defaults to ``localhost``. |
|
195
|
|
|
port : int, optional |
|
196
|
|
|
The port to connect on. Defaults to 5557. |
|
197
|
|
|
hwm : int, optional |
|
198
|
|
|
The `ZeroMQ high-water mark (HWM) |
|
199
|
|
|
<http://zguide.zeromq.org/page:all#High-Water-Marks>`_ on the |
|
200
|
|
|
receiving socket. Increasing this increases the buffer, which can |
|
201
|
|
|
be useful if your data preprocessing times are very random. |
|
202
|
|
|
However, it will increase memory usage. There is no easy way to |
|
203
|
|
|
tell how many batches will actually be queued with a particular |
|
204
|
|
|
HWM. Defaults to 10. Be sure to set the corresponding HWM on the |
|
205
|
|
|
server's end as well. |
|
206
|
|
|
axis_labels : dict, optional |
|
207
|
|
|
Maps source names to tuples of strings describing axis semantics, |
|
208
|
|
|
one per axis. Defaults to `None`, i.e. no information is available. |
|
209
|
|
|
|
|
210
|
|
|
""" |
|
211
|
|
|
def __init__(self, sources, produces_examples, host='localhost', port=5557, |
|
212
|
|
|
hwm=10, axis_labels=None): |
|
213
|
|
|
super(ServerDataStream, self).__init__(axis_labels=axis_labels) |
|
214
|
|
|
self.sources = sources |
|
215
|
|
|
self.produces_examples = produces_examples |
|
216
|
|
|
self.host = host |
|
217
|
|
|
self.port = port |
|
218
|
|
|
self.hwm = hwm |
|
219
|
|
|
self.connect() |
|
220
|
|
|
|
|
221
|
|
|
def connect(self): |
|
222
|
|
|
context = zmq.Context() |
|
223
|
|
|
self.socket = socket = context.socket(zmq.PULL) |
|
224
|
|
|
socket.set_hwm(self.hwm) |
|
225
|
|
|
socket.connect("tcp://{}:{}".format(self.host, self.port)) |
|
226
|
|
|
self.connected = True |
|
227
|
|
|
|
|
228
|
|
|
def get_data(self, request=None): |
|
229
|
|
|
if request is not None: |
|
230
|
|
|
raise ValueError |
|
231
|
|
|
if not self.connected: |
|
232
|
|
|
self.connect() |
|
233
|
|
|
data = recv_arrays(self.socket) |
|
234
|
|
|
return tuple(data) |
|
235
|
|
|
|
|
236
|
|
|
def get_epoch_iterator(self, **kwargs): |
|
237
|
|
|
return super(ServerDataStream, self).get_epoch_iterator(**kwargs) |
|
238
|
|
|
|
|
239
|
|
|
def close(self): |
|
240
|
|
|
pass |
|
241
|
|
|
|
|
242
|
|
|
def next_epoch(self): |
|
243
|
|
|
pass |
|
244
|
|
|
|
|
245
|
|
|
def reset(self): |
|
246
|
|
|
pass |
|
247
|
|
|
|
|
248
|
|
|
def __getstate__(self): |
|
249
|
|
|
state = self.__dict__.copy() |
|
250
|
|
|
state['connected'] = False |
|
251
|
|
|
del state['socket'] |
|
252
|
|
|
return state |
|
253
|
|
|
|