1
|
|
|
import os |
2
|
|
|
import subprocess |
3
|
|
|
import sys |
4
|
|
|
|
5
|
|
|
import h5py |
6
|
|
|
import scipy.io.wavfile |
7
|
|
|
|
8
|
|
|
from fuel.converters.base import fill_hdf5_file |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def convert_youtube_audio(directory, output_directory, youtube_id, channels, |
12
|
|
|
sample, output_filename=None): |
13
|
|
|
"""Converts downloaded YouTube audio to HDF5 format. |
14
|
|
|
|
15
|
|
|
Requires `ffmpeg` to be installed and available on the command line |
16
|
|
|
(i.e. available on your `PATH`). |
17
|
|
|
|
18
|
|
|
Parameters |
19
|
|
|
---------- |
20
|
|
|
directory : str |
21
|
|
|
Directory in which input files reside. |
22
|
|
|
output_directory : str |
23
|
|
|
Directory in which to save the converted dataset. |
24
|
|
|
youtube_id : str |
25
|
|
|
11-character video ID (taken from YouTube URL) |
26
|
|
|
channels : int |
27
|
|
|
The number of audio channels to use in the PCM Wave file. |
28
|
|
|
sample : int |
29
|
|
|
The sampling rate to use in Hz, e.g. 44100 or 16000. |
30
|
|
|
output_filename : str, optional |
31
|
|
|
Name of the saved dataset. If `None` (the default), |
32
|
|
|
`youtube_id.hdf5` is used. |
33
|
|
|
|
34
|
|
|
""" |
35
|
|
|
input_file = os.path.join(directory, '{}.m4a'.format(youtube_id)) |
36
|
|
|
wav_filename = '{}.wav'.format(youtube_id) |
37
|
|
|
wav_file = os.path.join(directory, wav_filename) |
38
|
|
|
ffmpeg_not_available = subprocess.call(['ffmpeg', '-version']) |
39
|
|
|
if ffmpeg_not_available: |
40
|
|
|
raise RuntimeError('conversion requires ffmpeg') |
41
|
|
|
subprocess.check_call(['ffmpeg', '-y', '-i', input_file, '-ac', |
42
|
|
|
str(channels), '-ar', str(sample), wav_file], |
43
|
|
|
stdout=sys.stdout) |
44
|
|
|
|
45
|
|
|
# Load WAV into array |
46
|
|
|
_, data = scipy.io.wavfile.read(wav_file) |
47
|
|
|
if data.ndim == 1: |
48
|
|
|
data = data[:, None] |
49
|
|
|
data = data[None, :] |
50
|
|
|
|
51
|
|
|
# Store in HDF5 |
52
|
|
|
if output_filename is None: |
53
|
|
|
output_filename = '{}.hdf5'.format(youtube_id) |
54
|
|
|
output_file = os.path.join(output_directory, output_filename) |
55
|
|
|
|
56
|
|
|
with h5py.File(output_file, 'w') as h5file: |
57
|
|
|
fill_hdf5_file(h5file, (('train', 'features', data),)) |
58
|
|
|
h5file['features'].dims[0].label = 'batch' |
59
|
|
|
h5file['features'].dims[1].label = 'time' |
60
|
|
|
h5file['features'].dims[2].label = 'feature' |
61
|
|
|
|
62
|
|
|
return (output_file,) |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
def fill_subparser(subparser): |
66
|
|
|
"""Sets up a subparser to convert YouTube audio files. |
67
|
|
|
|
68
|
|
|
Adds the compulsory `--youtube-id` flag as well as the optional |
69
|
|
|
`sample` and `channels` flags. |
70
|
|
|
|
71
|
|
|
Parameters |
72
|
|
|
---------- |
73
|
|
|
subparser : :class:`argparse.ArgumentParser` |
74
|
|
|
Subparser handling the `youtube_audio` command. |
75
|
|
|
|
76
|
|
|
""" |
77
|
|
|
subparser.add_argument( |
78
|
|
|
'--youtube-id', type=str, required=True, |
79
|
|
|
help=("The YouTube ID of the video from which to extract audio, " |
80
|
|
|
"usually an 11-character string.") |
81
|
|
|
) |
82
|
|
|
subparser.add_argument( |
83
|
|
|
'--channels', type=int, default=1, |
84
|
|
|
help=("The number of audio channels to convert to. The default of 1" |
85
|
|
|
"means audio is converted to mono.") |
86
|
|
|
) |
87
|
|
|
subparser.add_argument( |
88
|
|
|
'--sample', type=int, default=16000, |
89
|
|
|
help=("The sampling rate in Hz. The default of 16000 is " |
90
|
|
|
"significantly downsampled compared to normal WAVE files; " |
91
|
|
|
"pass 44100 for the usual sampling rate.") |
92
|
|
|
) |
93
|
|
|
return convert_youtube_audio |
94
|
|
|
|