|
1
|
|
|
from abc import ABCMeta, abstractmethod |
|
2
|
|
|
from collections import defaultdict, OrderedDict |
|
3
|
|
|
import logging |
|
4
|
|
|
from multiprocessing import Process, Queue |
|
5
|
|
|
|
|
6
|
|
|
import numpy |
|
7
|
|
|
from picklable_itertools import chain, ifilter, izip |
|
8
|
|
|
from picklable_itertools.extras import equizip |
|
9
|
|
|
from six import add_metaclass, iteritems |
|
10
|
|
|
|
|
11
|
|
|
from fuel import config |
|
12
|
|
|
from fuel.streams import AbstractDataStream |
|
13
|
|
|
from fuel.schemes import BatchSizeScheme |
|
14
|
|
|
from ..exceptions import AxisLabelsMismatchError |
|
15
|
|
|
|
|
16
|
|
|
log = logging.getLogger(__name__) |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class ExpectsAxisLabels(object): |
|
20
|
|
|
"""Mixin for transformers, used to verify axis labels. |
|
21
|
|
|
|
|
22
|
|
|
Notes |
|
23
|
|
|
----- |
|
24
|
|
|
Provides a method :meth:`verify_axis_labels` that should be called |
|
25
|
|
|
with the expected and actual values for an axis labels tuple. If |
|
26
|
|
|
`actual` is `None`, a warning is logged; if it is non-`None` and does |
|
27
|
|
|
not match `expected`, a :class:`AxisLabelsMismatchError` is raised. |
|
28
|
|
|
|
|
29
|
|
|
The check is only performed on the first call; if the call succeeds, |
|
30
|
|
|
an attribute is written to skip further checks, in the interest of |
|
31
|
|
|
speed. |
|
32
|
|
|
|
|
33
|
|
|
""" |
|
34
|
|
|
def verify_axis_labels(self, expected, actual, source_name): |
|
35
|
|
|
"""Verify that axis labels for a given source are as expected. |
|
36
|
|
|
|
|
37
|
|
|
Parameters |
|
38
|
|
|
---------- |
|
39
|
|
|
expected : tuple |
|
40
|
|
|
A tuple of strings representing the expected axis labels. |
|
41
|
|
|
actual : tuple or None |
|
42
|
|
|
A tuple of strings representing the actual axis labels, or |
|
43
|
|
|
`None` if they could not be determined. |
|
44
|
|
|
source_name : str |
|
45
|
|
|
The name of the source being checked. Used for caching the |
|
46
|
|
|
results of checks so that the check is only performed once. |
|
47
|
|
|
|
|
48
|
|
|
Notes |
|
49
|
|
|
----- |
|
50
|
|
|
Logs a warning in case of `actual=None`, raises an error on |
|
51
|
|
|
other mismatches. |
|
52
|
|
|
|
|
53
|
|
|
""" |
|
54
|
|
|
if not getattr(self, '_checked_axis_labels', False): |
|
55
|
|
|
self._checked_axis_labels = defaultdict(bool) |
|
56
|
|
|
if not self._checked_axis_labels[source_name]: |
|
57
|
|
|
if actual is None: |
|
58
|
|
|
log.warning("%s instance could not verify (missing) axis " |
|
59
|
|
|
"expected %s, got None", |
|
60
|
|
|
self.__class__.__name__, expected) |
|
61
|
|
|
else: |
|
62
|
|
|
if expected != actual: |
|
63
|
|
|
raise AxisLabelsMismatchError("{} expected axis labels " |
|
64
|
|
|
"{}, got {} instead".format( |
|
65
|
|
|
self.__class__.__name__, |
|
66
|
|
|
expected, actual)) |
|
67
|
|
|
self._checked_axis_labels[source_name] = True |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
@add_metaclass(ABCMeta) |
|
71
|
|
|
class Transformer(AbstractDataStream): |
|
72
|
|
|
"""A data stream that wraps another data stream. |
|
73
|
|
|
|
|
74
|
|
|
Subclasses must define a `transform_batch` method (to act on batches), |
|
75
|
|
|
a `transform_example` method (to act on individual examples), or |
|
76
|
|
|
both methods. |
|
77
|
|
|
|
|
78
|
|
|
Typically (using the interface mentioned above), the transformer |
|
79
|
|
|
is expected to have the same output type (example or batch) as its |
|
80
|
|
|
input type. If the transformer subclass is going from batches to |
|
81
|
|
|
examples or vice versa, it should override `get_data` instead. |
|
82
|
|
|
Overriding `get_data` is also necessary when access to `request` is |
|
83
|
|
|
necessary (e.g. for the :class:`Cache` transformer). |
|
84
|
|
|
|
|
85
|
|
|
Attributes |
|
86
|
|
|
---------- |
|
87
|
|
|
child_epoch_iterator : iterator type |
|
88
|
|
|
When a new epoch iterator is requested, a new epoch creator is |
|
89
|
|
|
automatically requested from the wrapped data stream and stored in |
|
90
|
|
|
this attribute. Use it to access data from the wrapped data stream |
|
91
|
|
|
by calling ``next(self.child_epoch_iterator)``. |
|
92
|
|
|
produces_examples : bool |
|
93
|
|
|
Whether this transformer produces examples (as opposed to batches |
|
94
|
|
|
of examples). |
|
95
|
|
|
|
|
96
|
|
|
""" |
|
97
|
|
|
def __init__(self, data_stream, produces_examples=None, **kwargs): |
|
98
|
|
|
super(Transformer, self).__init__(**kwargs) |
|
99
|
|
|
if produces_examples is not None: |
|
100
|
|
|
self.produces_examples = produces_examples |
|
101
|
|
|
self.data_stream = data_stream |
|
102
|
|
|
|
|
103
|
|
|
@property |
|
104
|
|
|
def sources(self): |
|
105
|
|
|
if hasattr(self, '_sources'): |
|
106
|
|
|
return self._sources |
|
107
|
|
|
return self.data_stream.sources |
|
108
|
|
|
|
|
109
|
|
|
@sources.setter |
|
110
|
|
|
def sources(self, value): |
|
111
|
|
|
self._sources = value |
|
112
|
|
|
|
|
113
|
|
|
def close(self): |
|
114
|
|
|
self.data_stream.close() |
|
115
|
|
|
|
|
116
|
|
|
def reset(self): |
|
117
|
|
|
self.data_stream.reset() |
|
118
|
|
|
|
|
119
|
|
|
def next_epoch(self): |
|
120
|
|
|
self.data_stream.next_epoch() |
|
121
|
|
|
|
|
122
|
|
|
def get_epoch_iterator(self, **kwargs): |
|
123
|
|
|
"""Get an epoch iterator for the wrapped data set. |
|
124
|
|
|
|
|
125
|
|
|
Notes |
|
126
|
|
|
----- |
|
127
|
|
|
This default implementation assumes that the epochs of the wrapped |
|
128
|
|
|
data stream are less or equal in length to the original data |
|
129
|
|
|
stream. Implementations for which this is not true should request |
|
130
|
|
|
new epoch iterators from the child data set when necessary. |
|
131
|
|
|
|
|
132
|
|
|
""" |
|
133
|
|
|
self.child_epoch_iterator = self.data_stream.get_epoch_iterator() |
|
134
|
|
|
return super(Transformer, self).get_epoch_iterator(**kwargs) |
|
135
|
|
|
|
|
136
|
|
|
def get_data(self, request=None): |
|
137
|
|
|
if request is not None: |
|
138
|
|
|
raise ValueError |
|
139
|
|
|
data = next(self.child_epoch_iterator) |
|
140
|
|
|
|
|
141
|
|
|
if self.produces_examples != self.data_stream.produces_examples: |
|
142
|
|
|
types = {True: 'examples', False: 'batches'} |
|
143
|
|
|
raise NotImplementedError( |
|
144
|
|
|
"the wrapped data stream produces {} while the {} transformer " |
|
145
|
|
|
"produces {}, which it does not support.".format( |
|
146
|
|
|
types[self.data_stream.produces_examples], |
|
147
|
|
|
self.__class__.__name__, |
|
148
|
|
|
types[self.produces_examples])) |
|
149
|
|
|
elif self.produces_examples: |
|
150
|
|
|
return self.transform_example(data) |
|
151
|
|
|
else: |
|
152
|
|
|
return self.transform_batch(data) |
|
153
|
|
|
|
|
154
|
|
|
def transform_example(self, example): |
|
155
|
|
|
"""Transforms a single example.""" |
|
156
|
|
|
raise NotImplementedError( |
|
157
|
|
|
"`{}` does not support examples as input, but the wrapped data " |
|
158
|
|
|
"stream produces examples.".format(self.__class__.__name__)) |
|
159
|
|
|
|
|
160
|
|
|
def transform_batch(self, batch): |
|
161
|
|
|
"""Transforms a batch of examples.""" |
|
162
|
|
|
raise NotImplementedError( |
|
163
|
|
|
"`{}` does not support batches as input, but the wrapped data " |
|
164
|
|
|
"stream produces batches.".format(self.__class__.__name__)) |
|
165
|
|
|
|
|
166
|
|
|
|
|
167
|
|
|
@add_metaclass(ABCMeta) |
|
168
|
|
|
class AgnosticTransformer(Transformer): |
|
169
|
|
|
"""A transformer that operates the same on examples or batches. |
|
170
|
|
|
|
|
171
|
|
|
Subclasses must implement the `transform_any` method, which is to be |
|
172
|
|
|
applied to both examples and batches. This is useful when the example |
|
173
|
|
|
and batch implementation of a transformation are the same. |
|
174
|
|
|
|
|
175
|
|
|
""" |
|
176
|
|
|
@abstractmethod |
|
177
|
|
|
def transform_any(self, data): |
|
178
|
|
|
"""Transforms the input, which can either be an example or a batch.""" |
|
179
|
|
|
|
|
180
|
|
|
def transform_example(self, example): |
|
181
|
|
|
return self.transform_any(example) |
|
182
|
|
|
|
|
183
|
|
|
def transform_batch(self, batch): |
|
184
|
|
|
return self.transform_any(batch) |
|
185
|
|
|
|
|
186
|
|
|
|
|
187
|
|
|
class Mapping(Transformer): |
|
188
|
|
|
"""Applies a mapping to the data of the wrapped data stream. |
|
189
|
|
|
|
|
190
|
|
|
Parameters |
|
191
|
|
|
---------- |
|
192
|
|
|
data_stream : instance of :class:`DataStream` |
|
193
|
|
|
The wrapped data stream. |
|
194
|
|
|
mapping : callable |
|
195
|
|
|
The mapping to be applied. The mapping function is supposed |
|
196
|
|
|
to accept a tuple and return a tuple by default. If |
|
197
|
|
|
`mapping_accepts` is set to `dict`, the function is expected to |
|
198
|
|
|
work with ordered dictionaries where source names are the keys. |
|
199
|
|
|
add_sources : tuple of str, optional |
|
200
|
|
|
When given, the data produced by the mapping is added to original |
|
201
|
|
|
data under source names `add_sources`. |
|
202
|
|
|
mapping_accepts : type, optional |
|
203
|
|
|
Input and output type of the mapping function `list` by default, |
|
204
|
|
|
can be changed to `dict`. |
|
205
|
|
|
|
|
206
|
|
|
""" |
|
207
|
|
|
def __init__(self, data_stream, mapping, add_sources=None, |
|
208
|
|
|
mapping_accepts=list, **kwargs): |
|
209
|
|
|
super(Mapping, self).__init__( |
|
210
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
211
|
|
|
if mapping_accepts not in [list, dict]: |
|
212
|
|
|
raise ValueError('`Mapping` can accept `list` or `dict`, not `{}`' |
|
213
|
|
|
.format(mapping_accepts)) |
|
214
|
|
|
|
|
215
|
|
|
self.mapping_accepts = mapping_accepts |
|
216
|
|
|
self.mapping = mapping |
|
217
|
|
|
self.add_sources = add_sources |
|
218
|
|
|
|
|
219
|
|
|
@property |
|
220
|
|
|
def sources(self): |
|
221
|
|
|
return self.data_stream.sources + (self.add_sources |
|
222
|
|
|
if self.add_sources else ()) |
|
223
|
|
|
|
|
224
|
|
|
def get_data(self, request=None): |
|
225
|
|
|
if request is not None: |
|
226
|
|
|
raise ValueError |
|
227
|
|
|
data = next(self.child_epoch_iterator) |
|
228
|
|
|
if self.mapping_accepts == dict: |
|
229
|
|
|
data = OrderedDict(equizip(self.data_stream.sources, data)) |
|
230
|
|
|
image = self.mapping(data) |
|
231
|
|
|
if self.mapping_accepts == dict: |
|
232
|
|
|
image = tuple(image[source] for source in self.sources) |
|
233
|
|
|
if not self.add_sources: |
|
234
|
|
|
return image |
|
235
|
|
|
return data + image |
|
236
|
|
|
|
|
237
|
|
|
|
|
238
|
|
|
@add_metaclass(ABCMeta) |
|
239
|
|
|
class SourcewiseTransformer(Transformer): |
|
240
|
|
|
"""Applies a transformation sourcewise. |
|
241
|
|
|
|
|
242
|
|
|
Subclasses must define `transform_source_example` (to transform |
|
243
|
|
|
examples), `transform_source_batch` (to transform batches) or |
|
244
|
|
|
both. |
|
245
|
|
|
|
|
246
|
|
|
Parameters |
|
247
|
|
|
---------- |
|
248
|
|
|
data_stream : instance of :class:`DataStream` |
|
249
|
|
|
The wrapped data stream. |
|
250
|
|
|
which_sources : tuple of str, optional |
|
251
|
|
|
Which sources to apply the mapping to. Defaults to `None`, in |
|
252
|
|
|
which case the mapping is applied to all sources. |
|
253
|
|
|
|
|
254
|
|
|
""" |
|
255
|
|
|
def __init__(self, data_stream, produces_examples, which_sources=None, |
|
256
|
|
|
**kwargs): |
|
257
|
|
|
if which_sources is None: |
|
258
|
|
|
which_sources = data_stream.sources |
|
259
|
|
|
self.which_sources = which_sources |
|
260
|
|
|
super(SourcewiseTransformer, self).__init__( |
|
261
|
|
|
data_stream, produces_examples, **kwargs) |
|
262
|
|
|
|
|
263
|
|
|
def _apply_sourcewise_transformation(self, data, method): |
|
264
|
|
|
data = list(data) |
|
265
|
|
|
for i, source_name in enumerate(self.data_stream.sources): |
|
266
|
|
|
if source_name in self.which_sources: |
|
267
|
|
|
data[i] = method(data[i], source_name) |
|
268
|
|
|
return tuple(data) |
|
269
|
|
|
|
|
270
|
|
|
def transform_source_example(self, source_example, source_name): |
|
271
|
|
|
"""Applies a transformation to an example from a source. |
|
272
|
|
|
|
|
273
|
|
|
Parameters |
|
274
|
|
|
---------- |
|
275
|
|
|
source_example : :class:`numpy.ndarray` |
|
276
|
|
|
An example from a source. |
|
277
|
|
|
source_name : str |
|
278
|
|
|
The name of the source being operated upon. |
|
279
|
|
|
|
|
280
|
|
|
""" |
|
281
|
|
|
raise NotImplementedError( |
|
282
|
|
|
"`{}` does not support examples as input, but the wrapped data " |
|
283
|
|
|
"stream produces examples.".format(self.__class__.__name__)) |
|
284
|
|
|
|
|
285
|
|
|
def transform_source_batch(self, source_batch, source_name): |
|
286
|
|
|
"""Applies a transformation to a batch from a source. |
|
287
|
|
|
|
|
288
|
|
|
Parameters |
|
289
|
|
|
---------- |
|
290
|
|
|
source_batch : :class:`numpy.ndarray` |
|
291
|
|
|
A batch of examples from a source. |
|
292
|
|
|
source_name : str |
|
293
|
|
|
The name of the source being operated upon. |
|
294
|
|
|
|
|
295
|
|
|
""" |
|
296
|
|
|
raise NotImplementedError( |
|
297
|
|
|
"`{}` does not support batches as input, but the wrapped data " |
|
298
|
|
|
"stream produces batches.".format(self.__class__.__name__)) |
|
299
|
|
|
|
|
300
|
|
|
def transform_example(self, example): |
|
301
|
|
|
return self._apply_sourcewise_transformation( |
|
302
|
|
|
data=example, method=self.transform_source_example) |
|
303
|
|
|
|
|
304
|
|
|
def transform_batch(self, batch): |
|
305
|
|
|
return self._apply_sourcewise_transformation( |
|
306
|
|
|
data=batch, method=self.transform_source_batch) |
|
307
|
|
|
|
|
308
|
|
|
|
|
309
|
|
|
@add_metaclass(ABCMeta) |
|
310
|
|
|
class AgnosticSourcewiseTransformer(AgnosticTransformer, |
|
311
|
|
|
SourcewiseTransformer): |
|
312
|
|
|
"""A sourcewise transformer that operates the same on examples or batches. |
|
313
|
|
|
|
|
314
|
|
|
Subclasses must implement the `transform_any_source` method, which is |
|
315
|
|
|
to be applied to both examples and batches. This is useful when the |
|
316
|
|
|
example and batch implementation of a sourcewise transformation are |
|
317
|
|
|
the same. |
|
318
|
|
|
|
|
319
|
|
|
""" |
|
320
|
|
|
def transform_any(self, data): |
|
321
|
|
|
return self._apply_sourcewise_transformation( |
|
322
|
|
|
data=data, method=self.transform_any_source) |
|
323
|
|
|
|
|
324
|
|
|
@abstractmethod |
|
325
|
|
|
def transform_any_source(self, source_data, source_name): |
|
326
|
|
|
"""Applies a transformation to a source. |
|
327
|
|
|
|
|
328
|
|
|
The data can either be an example or a batch of examples. |
|
329
|
|
|
|
|
330
|
|
|
Parameters |
|
331
|
|
|
---------- |
|
332
|
|
|
source_data : :class:`numpy.ndarray` |
|
333
|
|
|
Data from a source. |
|
334
|
|
|
source_name : str |
|
335
|
|
|
The name of the source being operated upon. |
|
336
|
|
|
|
|
337
|
|
|
""" |
|
338
|
|
|
|
|
339
|
|
|
|
|
340
|
|
|
class Flatten(SourcewiseTransformer): |
|
341
|
|
|
"""Flattens selected sources. |
|
342
|
|
|
|
|
343
|
|
|
If the wrapped data stream produces batches, they will be flattened |
|
344
|
|
|
along all but the first axis. |
|
345
|
|
|
|
|
346
|
|
|
Incoming sources will be treated as numpy arrays (i.e. using |
|
347
|
|
|
`numpy.asarray`). |
|
348
|
|
|
|
|
349
|
|
|
""" |
|
350
|
|
|
def __init__(self, data_stream, **kwargs): |
|
351
|
|
|
# Modify the axis_labels dict to reflect the fact that all non-batch |
|
352
|
|
|
# axes will be grouped together under the same 'feature' axis. |
|
353
|
|
|
if data_stream.axis_labels: |
|
354
|
|
|
which_sources = kwargs.get('which_sources', data_stream.sources) |
|
355
|
|
|
kwargs.setdefault( |
|
356
|
|
|
'axis_labels', |
|
357
|
|
|
self._infer_axis_labels(data_stream, which_sources)) |
|
358
|
|
|
super(Flatten, self).__init__( |
|
359
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
360
|
|
|
|
|
361
|
|
|
def _infer_axis_labels(self, data_stream, which_sources): |
|
362
|
|
|
axis_labels = {} |
|
363
|
|
|
for source, labels in iteritems(data_stream.axis_labels): |
|
364
|
|
|
if source in which_sources: |
|
365
|
|
|
if not labels: |
|
366
|
|
|
axis_labels[source] = None |
|
367
|
|
|
elif data_stream.produces_examples: |
|
368
|
|
|
axis_labels[source] = ('feature',) |
|
369
|
|
|
else: |
|
370
|
|
|
axis_labels[source] = (labels[0], 'feature') |
|
371
|
|
|
else: |
|
372
|
|
|
axis_labels[source] = labels |
|
373
|
|
|
return axis_labels |
|
374
|
|
|
|
|
375
|
|
|
def transform_source_example(self, source_example, _): |
|
376
|
|
|
return numpy.asarray(source_example).flatten() |
|
377
|
|
|
|
|
378
|
|
|
def transform_source_batch(self, source_batch, _): |
|
379
|
|
|
return numpy.asarray(source_batch).reshape((len(source_batch), -1)) |
|
380
|
|
|
|
|
381
|
|
|
|
|
382
|
|
|
class ScaleAndShift(AgnosticSourcewiseTransformer): |
|
383
|
|
|
"""Scales and shifts selected sources by scalar quantities. |
|
384
|
|
|
|
|
385
|
|
|
Incoming sources will be treated as numpy arrays (i.e. using |
|
386
|
|
|
`numpy.asarray`). |
|
387
|
|
|
|
|
388
|
|
|
Parameters |
|
389
|
|
|
---------- |
|
390
|
|
|
scale : float |
|
391
|
|
|
Scaling factor. |
|
392
|
|
|
shift : float |
|
393
|
|
|
Shifting factor. |
|
394
|
|
|
|
|
395
|
|
|
""" |
|
396
|
|
|
def __init__(self, data_stream, scale, shift, **kwargs): |
|
397
|
|
|
self.scale = scale |
|
398
|
|
|
self.shift = shift |
|
399
|
|
|
if data_stream.axis_labels: |
|
400
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
|
401
|
|
|
super(ScaleAndShift, self).__init__( |
|
402
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
403
|
|
|
|
|
404
|
|
|
def transform_any_source(self, source_data, _): |
|
405
|
|
|
return numpy.asarray(source_data) * self.scale + self.shift |
|
406
|
|
|
|
|
407
|
|
|
|
|
408
|
|
|
class Cast(AgnosticSourcewiseTransformer): |
|
409
|
|
|
"""Casts selected sources as some dtype. |
|
410
|
|
|
|
|
411
|
|
|
Incoming sources will be treated as numpy arrays (i.e. using |
|
412
|
|
|
`numpy.asarray`). |
|
413
|
|
|
|
|
414
|
|
|
Parameters |
|
415
|
|
|
---------- |
|
416
|
|
|
dtype : str |
|
417
|
|
|
Data type to cast to. Can be any valid numpy dtype, or 'floatX', |
|
418
|
|
|
in which case ``fuel.config.floatX`` is used. |
|
419
|
|
|
|
|
420
|
|
|
""" |
|
421
|
|
|
def __init__(self, data_stream, dtype, **kwargs): |
|
422
|
|
|
if dtype == 'floatX': |
|
423
|
|
|
dtype = config.floatX |
|
424
|
|
|
self.dtype = dtype |
|
425
|
|
|
if data_stream.axis_labels: |
|
426
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
|
427
|
|
|
super(Cast, self).__init__( |
|
428
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
429
|
|
|
|
|
430
|
|
|
def transform_any_source(self, source_data, _): |
|
431
|
|
|
return numpy.asarray(source_data, dtype=self.dtype) |
|
432
|
|
|
|
|
433
|
|
|
|
|
434
|
|
|
class ForceFloatX(AgnosticSourcewiseTransformer): |
|
435
|
|
|
"""Force all floating point numpy arrays to be floatX.""" |
|
436
|
|
|
def __init__(self, data_stream, **kwargs): |
|
437
|
|
|
if data_stream.axis_labels: |
|
438
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
|
439
|
|
|
super(ForceFloatX, self).__init__( |
|
440
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
441
|
|
|
|
|
442
|
|
|
def transform_any_source(self, source_data, _): |
|
443
|
|
|
source_needs_casting = (isinstance(source_data, numpy.ndarray) and |
|
444
|
|
|
source_data.dtype.kind == "f" and |
|
445
|
|
|
source_data.dtype != config.floatX) |
|
446
|
|
|
if source_needs_casting: |
|
447
|
|
|
source_data = source_data.astype(config.floatX) |
|
448
|
|
|
return source_data |
|
449
|
|
|
|
|
450
|
|
|
|
|
451
|
|
|
class Filter(Transformer): |
|
452
|
|
|
"""Filters samples that meet a predicate. |
|
453
|
|
|
|
|
454
|
|
|
Parameters |
|
455
|
|
|
---------- |
|
456
|
|
|
data_stream : instance of :class:`DataStream` |
|
457
|
|
|
The filtered data stream. |
|
458
|
|
|
predicate : callable |
|
459
|
|
|
Should return ``True`` for the samples to be kept. |
|
460
|
|
|
|
|
461
|
|
|
""" |
|
462
|
|
|
def __init__(self, data_stream, predicate, **kwargs): |
|
463
|
|
|
if data_stream.axis_labels: |
|
464
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
|
465
|
|
|
super(Filter, self).__init__( |
|
466
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
467
|
|
|
self.predicate = predicate |
|
468
|
|
|
|
|
469
|
|
|
def get_epoch_iterator(self, **kwargs): |
|
470
|
|
|
super(Filter, self).get_epoch_iterator(**kwargs) |
|
471
|
|
|
return ifilter(self.predicate, self.child_epoch_iterator) |
|
472
|
|
|
|
|
473
|
|
|
|
|
474
|
|
|
class Cache(Transformer): |
|
475
|
|
|
"""Cache examples when sequentially reading a dataset. |
|
476
|
|
|
|
|
477
|
|
|
Given a data stream which reads large chunks of data, this data |
|
478
|
|
|
stream caches these chunks and returns smaller batches from it until |
|
479
|
|
|
exhausted. |
|
480
|
|
|
|
|
481
|
|
|
Parameters |
|
482
|
|
|
---------- |
|
483
|
|
|
iteration_scheme : :class:`.IterationScheme` |
|
484
|
|
|
Note that this iteration scheme must return batch sizes (integers), |
|
485
|
|
|
which must necessarily be smaller than the child data stream i.e. |
|
486
|
|
|
the batches returned must be smaller than the cache size. |
|
487
|
|
|
|
|
488
|
|
|
Attributes |
|
489
|
|
|
---------- |
|
490
|
|
|
cache : list of lists of objects |
|
491
|
|
|
This attribute holds the cache at any given point. It is a list of |
|
492
|
|
|
the same size as the :attr:`sources` attribute. Each element in |
|
493
|
|
|
this list in its turn a list of examples that are currently in the |
|
494
|
|
|
cache. The cache gets emptied at the start of each epoch, and gets |
|
495
|
|
|
refilled when needed through the :meth:`get_data` method. |
|
496
|
|
|
|
|
497
|
|
|
""" |
|
498
|
|
|
def __init__(self, data_stream, iteration_scheme, **kwargs): |
|
499
|
|
|
# Note: produces_examples will always be False because of this |
|
500
|
|
|
# restriction: the only iteration schemes allowed are BatchSizeScheme, |
|
501
|
|
|
# which produce batches. |
|
502
|
|
|
if not isinstance(iteration_scheme, BatchSizeScheme): |
|
503
|
|
|
raise ValueError('iteration scheme must be an instance of ' |
|
504
|
|
|
'BatchSizeScheme') |
|
505
|
|
|
if data_stream.axis_labels: |
|
506
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
|
507
|
|
|
super(Cache, self).__init__( |
|
508
|
|
|
data_stream, iteration_scheme=iteration_scheme, **kwargs) |
|
509
|
|
|
self.cache = [[] for _ in self.sources] |
|
510
|
|
|
|
|
511
|
|
|
def get_data(self, request=None): |
|
512
|
|
|
if request is None: |
|
513
|
|
|
raise ValueError |
|
514
|
|
|
if request > len(self.cache[0]): |
|
515
|
|
|
self._cache() |
|
516
|
|
|
data = [] |
|
517
|
|
|
for i, cache in enumerate(self.cache): |
|
518
|
|
|
data.append(numpy.asarray(cache[:request])) |
|
519
|
|
|
self.cache[i] = cache[request:] |
|
520
|
|
|
return tuple(data) |
|
521
|
|
|
|
|
522
|
|
|
def get_epoch_iterator(self, **kwargs): |
|
523
|
|
|
self.cache = [[] for _ in self.sources] |
|
524
|
|
|
return super(Cache, self).get_epoch_iterator(**kwargs) |
|
525
|
|
|
|
|
526
|
|
|
def _cache(self): |
|
527
|
|
|
try: |
|
528
|
|
|
for cache, data in zip(self.cache, |
|
529
|
|
|
next(self.child_epoch_iterator)): |
|
530
|
|
|
cache.extend(data) |
|
531
|
|
|
except StopIteration: |
|
532
|
|
|
if not self.cache[0]: |
|
533
|
|
|
raise |
|
534
|
|
|
|
|
535
|
|
|
|
|
536
|
|
|
class SortMapping(object): |
|
537
|
|
|
"""Callable class for creating sorting mappings. |
|
538
|
|
|
|
|
539
|
|
|
This class can be used to create a callable that can be used by the |
|
540
|
|
|
:class:`Mapping` constructor. |
|
541
|
|
|
|
|
542
|
|
|
Parameters |
|
543
|
|
|
---------- |
|
544
|
|
|
key : callable |
|
545
|
|
|
The mapping that returns the value to sort on. Its input will be |
|
546
|
|
|
a tuple that contains a single data point for each source. |
|
547
|
|
|
reverse : boolean value that indicates whether the sort order should |
|
548
|
|
|
be reversed. |
|
549
|
|
|
|
|
550
|
|
|
""" |
|
551
|
|
|
def __init__(self, key, reverse=False): |
|
552
|
|
|
self.key = key |
|
553
|
|
|
self.reverse = reverse |
|
554
|
|
|
|
|
555
|
|
|
def __call__(self, batch): |
|
556
|
|
|
output = sorted(zip(*batch), key=self.key, reverse=self.reverse) |
|
557
|
|
|
output = tuple(numpy.asarray(i) if isinstance(j, numpy.ndarray) |
|
558
|
|
|
else list(i) |
|
559
|
|
|
for i, j in zip(zip(*output), batch)) |
|
560
|
|
|
return output |
|
561
|
|
|
|
|
562
|
|
|
|
|
563
|
|
|
class Batch(Transformer): |
|
564
|
|
|
"""Creates minibatches from data streams providing single examples. |
|
565
|
|
|
|
|
566
|
|
|
Some datasets only return one example at at time e.g. when reading text |
|
567
|
|
|
files a line at a time. This wrapper reads several examples |
|
568
|
|
|
sequentially to turn those into minibatches. |
|
569
|
|
|
|
|
570
|
|
|
Parameters |
|
571
|
|
|
---------- |
|
572
|
|
|
data_stream : :class:`AbstractDataStream` instance |
|
573
|
|
|
The data stream to wrap. |
|
574
|
|
|
iteration_scheme : :class:`.BatchSizeScheme` instance |
|
575
|
|
|
The iteration scheme to use; should return integers representing |
|
576
|
|
|
the size of the batch to return. |
|
577
|
|
|
strictness : int, optional |
|
578
|
|
|
How strictly the iterator should adhere to the batch size. By |
|
579
|
|
|
default, the value 0 means that the last batch is returned |
|
580
|
|
|
regardless of its size, so it can be smaller than what is actually |
|
581
|
|
|
requested. At level 1, the last batch is discarded if it is not of |
|
582
|
|
|
the correct size. At the highest strictness level, 2, an error is |
|
583
|
|
|
raised if a batch of the requested size cannot be provided. |
|
584
|
|
|
|
|
585
|
|
|
""" |
|
586
|
|
|
def __init__(self, data_stream, iteration_scheme, strictness=0, **kwargs): |
|
587
|
|
|
if not data_stream.produces_examples: |
|
588
|
|
|
raise ValueError('the wrapped data stream must produce examples, ' |
|
589
|
|
|
'not batches of examples.') |
|
590
|
|
|
# The value for `produces_examples` is inferred from the iteration |
|
591
|
|
|
# scheme's `requests_examples` attribute. We expect the scheme to |
|
592
|
|
|
# request batches. |
|
593
|
|
|
if iteration_scheme.requests_examples: |
|
594
|
|
|
raise ValueError('the iteration scheme must request batches, ' |
|
595
|
|
|
'not individual examples.') |
|
596
|
|
|
if data_stream.axis_labels: |
|
597
|
|
|
kwargs.setdefault( |
|
598
|
|
|
'axis_labels', |
|
599
|
|
|
dict((source, ('batch',) + labels if labels else None) for |
|
600
|
|
|
source, labels in iteritems(data_stream.axis_labels))) |
|
601
|
|
|
super(Batch, self).__init__( |
|
602
|
|
|
data_stream, iteration_scheme=iteration_scheme, **kwargs) |
|
603
|
|
|
self.strictness = strictness |
|
604
|
|
|
|
|
605
|
|
|
def get_data(self, request=None): |
|
606
|
|
|
"""Get data from the dataset.""" |
|
607
|
|
|
if request is None: |
|
608
|
|
|
raise ValueError |
|
609
|
|
|
data = [[] for _ in self.sources] |
|
610
|
|
|
for i in range(request): |
|
611
|
|
|
try: |
|
612
|
|
|
for source_data, example in zip( |
|
613
|
|
|
data, next(self.child_epoch_iterator)): |
|
614
|
|
|
source_data.append(example) |
|
615
|
|
|
except StopIteration: |
|
616
|
|
|
# If some data has been extracted and `strict` is not set, |
|
617
|
|
|
# we should spit out this data before stopping iteration. |
|
618
|
|
|
if not self.strictness and data[0]: |
|
619
|
|
|
break |
|
620
|
|
|
elif self.strictness > 1 and data[0]: |
|
621
|
|
|
raise ValueError |
|
622
|
|
|
raise |
|
623
|
|
|
return tuple(numpy.asarray(source_data) for source_data in data) |
|
624
|
|
|
|
|
625
|
|
|
|
|
626
|
|
|
class Unpack(Transformer): |
|
627
|
|
|
"""Unpacks batches to compose a stream of examples. |
|
628
|
|
|
|
|
629
|
|
|
This class is the inverse of the Batch class: it turns a minibatch into |
|
630
|
|
|
a stream of examples. |
|
631
|
|
|
|
|
632
|
|
|
Parameters |
|
633
|
|
|
---------- |
|
634
|
|
|
data_stream : :class:`AbstractDataStream` instance |
|
635
|
|
|
The data stream to unpack |
|
636
|
|
|
|
|
637
|
|
|
""" |
|
638
|
|
|
def __init__(self, data_stream, **kwargs): |
|
639
|
|
|
if data_stream.produces_examples: |
|
640
|
|
|
raise ValueError('the wrapped data stream must produce batches of ' |
|
641
|
|
|
'examples, not examples') |
|
642
|
|
|
if data_stream.axis_labels: |
|
643
|
|
|
kwargs.setdefault( |
|
644
|
|
|
'axis_labels', |
|
645
|
|
|
dict((source, labels[1:] if labels else None) for |
|
646
|
|
|
source, labels in iteritems(data_stream.axis_labels))) |
|
647
|
|
|
super(Unpack, self).__init__( |
|
648
|
|
|
data_stream, produces_examples=True, **kwargs) |
|
649
|
|
|
self.data = None |
|
650
|
|
|
|
|
651
|
|
|
def get_data(self, request=None): |
|
652
|
|
|
if request is not None: |
|
653
|
|
|
raise ValueError |
|
654
|
|
|
if not self.data: |
|
655
|
|
|
data = next(self.child_epoch_iterator) |
|
656
|
|
|
self.data = izip(*data) |
|
657
|
|
|
try: |
|
658
|
|
|
return next(self.data) |
|
659
|
|
|
except StopIteration: |
|
660
|
|
|
self.data = None |
|
661
|
|
|
return self.get_data() |
|
662
|
|
|
|
|
663
|
|
|
|
|
664
|
|
|
class Padding(Transformer): |
|
665
|
|
|
"""Adds padding to variable-length sequences. |
|
666
|
|
|
|
|
667
|
|
|
When your batches consist of variable-length sequences, use this class |
|
668
|
|
|
to equalize lengths by adding zero-padding. To distinguish between |
|
669
|
|
|
data and padding masks can be produced. For each data source that is |
|
670
|
|
|
masked, a new source will be added. This source will have the name of |
|
671
|
|
|
the original source with the suffix ``_mask`` (e.g. ``features_mask``). |
|
672
|
|
|
|
|
673
|
|
|
Elements of incoming batches will be treated as numpy arrays (i.e. |
|
674
|
|
|
using `numpy.asarray`). If they have more than one dimension, |
|
675
|
|
|
all dimensions except length, that is the first one, must be equal. |
|
676
|
|
|
|
|
677
|
|
|
Parameters |
|
678
|
|
|
---------- |
|
679
|
|
|
data_stream : :class:`AbstractDataStream` instance |
|
680
|
|
|
The data stream to wrap |
|
681
|
|
|
mask_sources : tuple of strings, optional |
|
682
|
|
|
The sources for which we need to add a mask. If not provided, a |
|
683
|
|
|
mask will be created for all data sources |
|
684
|
|
|
mask_dtype: str, optional |
|
685
|
|
|
data type of masks. If not provided, floatX from config will |
|
686
|
|
|
be used. |
|
687
|
|
|
|
|
688
|
|
|
""" |
|
689
|
|
|
def __init__(self, data_stream, mask_sources=None, mask_dtype=None, |
|
690
|
|
|
**kwargs): |
|
691
|
|
|
if data_stream.produces_examples: |
|
692
|
|
|
raise ValueError('the wrapped data stream must produce batches of ' |
|
693
|
|
|
'examples, not examples') |
|
694
|
|
|
super(Padding, self).__init__( |
|
695
|
|
|
data_stream, produces_examples=False, **kwargs) |
|
696
|
|
|
if mask_sources is None: |
|
697
|
|
|
mask_sources = self.data_stream.sources |
|
698
|
|
|
self.mask_sources = mask_sources |
|
699
|
|
|
if mask_dtype is None: |
|
700
|
|
|
self.mask_dtype = config.floatX |
|
701
|
|
|
else: |
|
702
|
|
|
self.mask_dtype = mask_dtype |
|
703
|
|
|
|
|
704
|
|
|
@property |
|
705
|
|
|
def sources(self): |
|
706
|
|
|
sources = [] |
|
707
|
|
|
for source in self.data_stream.sources: |
|
708
|
|
|
sources.append(source) |
|
709
|
|
|
if source in self.mask_sources: |
|
710
|
|
|
sources.append(source + '_mask') |
|
711
|
|
|
return tuple(sources) |
|
712
|
|
|
|
|
713
|
|
|
def transform_batch(self, batch): |
|
714
|
|
|
batch_with_masks = [] |
|
715
|
|
|
for i, (source, source_batch) in enumerate( |
|
716
|
|
|
zip(self.data_stream.sources, batch)): |
|
717
|
|
|
if source not in self.mask_sources: |
|
718
|
|
|
batch_with_masks.append(source_batch) |
|
719
|
|
|
continue |
|
720
|
|
|
|
|
721
|
|
|
shapes = [numpy.asarray(sample).shape for sample in source_batch] |
|
722
|
|
|
lengths = [shape[0] for shape in shapes] |
|
723
|
|
|
max_sequence_length = max(lengths) |
|
724
|
|
|
rest_shape = shapes[0][1:] |
|
725
|
|
|
if not all([shape[1:] == rest_shape for shape in shapes]): |
|
726
|
|
|
raise ValueError("All dimensions except length must be equal") |
|
727
|
|
|
dtype = numpy.asarray(source_batch[0]).dtype |
|
728
|
|
|
|
|
729
|
|
|
padded_batch = numpy.zeros( |
|
730
|
|
|
(len(source_batch), max_sequence_length) + rest_shape, |
|
731
|
|
|
dtype=dtype) |
|
732
|
|
|
for i, sample in enumerate(source_batch): |
|
733
|
|
|
padded_batch[i, :len(sample)] = sample |
|
734
|
|
|
batch_with_masks.append(padded_batch) |
|
735
|
|
|
|
|
736
|
|
|
mask = numpy.zeros((len(source_batch), max_sequence_length), |
|
737
|
|
|
self.mask_dtype) |
|
738
|
|
|
for i, sequence_length in enumerate(lengths): |
|
739
|
|
|
mask[i, :sequence_length] = 1 |
|
740
|
|
|
batch_with_masks.append(mask) |
|
741
|
|
|
return tuple(batch_with_masks) |
|
742
|
|
|
|
|
743
|
|
|
|
|
744
|
|
|
class Merge(AbstractDataStream): |
|
745
|
|
|
"""Merges several datastreams into a single one. |
|
746
|
|
|
|
|
747
|
|
|
Parameters |
|
748
|
|
|
---------- |
|
749
|
|
|
data_streams : iterable |
|
750
|
|
|
The data streams to merge. |
|
751
|
|
|
sources : iterable |
|
752
|
|
|
A collection of strings, determining what sources should be called. |
|
753
|
|
|
|
|
754
|
|
|
Examples |
|
755
|
|
|
-------- |
|
756
|
|
|
>>> from fuel.datasets import IterableDataset |
|
757
|
|
|
>>> english = IterableDataset(['Hello world!']) |
|
758
|
|
|
>>> french = IterableDataset(['Bonjour le monde!']) |
|
759
|
|
|
>>> from fuel.streams import DataStream |
|
760
|
|
|
>>> streams = (DataStream(english), |
|
761
|
|
|
... DataStream(french)) |
|
762
|
|
|
>>> merged_stream = Merge(streams, ('english', 'french')) |
|
763
|
|
|
>>> merged_stream.sources |
|
764
|
|
|
('english', 'french') |
|
765
|
|
|
>>> next(merged_stream.get_epoch_iterator()) |
|
766
|
|
|
('Hello world!', 'Bonjour le monde!') |
|
767
|
|
|
|
|
768
|
|
|
""" |
|
769
|
|
|
def __init__(self, data_streams, sources, axis_labels=None): |
|
770
|
|
|
super(Merge, self).__init__( |
|
771
|
|
|
iteration_scheme=None, axis_labels=axis_labels) |
|
772
|
|
|
if not all(data_stream.produces_examples == |
|
773
|
|
|
data_streams[0].produces_examples |
|
774
|
|
|
for data_stream in data_streams): |
|
775
|
|
|
raise ValueError('all data streams must produce the same type of ' |
|
776
|
|
|
'output (batches or examples)') |
|
777
|
|
|
self.data_streams = data_streams |
|
778
|
|
|
self.produces_examples = self.data_streams[0].produces_examples |
|
779
|
|
|
|
|
780
|
|
|
if len(list(chain(*[data_stream.sources for data_stream |
|
781
|
|
|
in data_streams]))) != len(sources): |
|
782
|
|
|
raise ValueError("wrong number of sources given") |
|
783
|
|
|
self.sources = sources |
|
784
|
|
|
|
|
785
|
|
|
def close(self): |
|
786
|
|
|
for data_stream in self.data_streams: |
|
787
|
|
|
data_stream.close() |
|
788
|
|
|
|
|
789
|
|
|
def reset(self): |
|
790
|
|
|
for data_stream in self.data_streams: |
|
791
|
|
|
data_stream.reset() |
|
792
|
|
|
|
|
793
|
|
|
def next_epoch(self): |
|
794
|
|
|
for data_stream in self.data_streams: |
|
795
|
|
|
data_stream.next_epoch() |
|
796
|
|
|
|
|
797
|
|
|
def get_epoch_iterator(self, **kwargs): |
|
798
|
|
|
self.child_epoch_iterators = [data_stream.get_epoch_iterator() |
|
799
|
|
|
for data_stream in self.data_streams] |
|
800
|
|
|
return super(Merge, self).get_epoch_iterator(**kwargs) |
|
801
|
|
|
|
|
802
|
|
|
def get_data(self, request=None): |
|
803
|
|
|
if request is not None: |
|
804
|
|
|
raise ValueError |
|
805
|
|
|
result = [] |
|
806
|
|
|
for child_epoch_iterator in self.child_epoch_iterators: |
|
807
|
|
|
result.extend(next(child_epoch_iterator)) |
|
808
|
|
|
return tuple(result) |
|
809
|
|
|
|
|
810
|
|
|
|
|
811
|
|
|
class BackgroundProcess(object): |
|
812
|
|
|
"""A background process that reads batches and stores them in a queue. |
|
813
|
|
|
|
|
814
|
|
|
The :meth:`main` method needs to be called in order to start reading |
|
815
|
|
|
batches into the queue. Note that this process will run infinitely; |
|
816
|
|
|
start it as a :attr:`~multiprocessing.Process.daemon` to make sure it |
|
817
|
|
|
will get killed when the main process exits. |
|
818
|
|
|
|
|
819
|
|
|
Parameters |
|
820
|
|
|
---------- |
|
821
|
|
|
data_stream : :class:`.DataStream` or :class:`Transformer` |
|
822
|
|
|
The data stream from which to read batches. |
|
823
|
|
|
max_batches : int |
|
824
|
|
|
The maximum number of batches to store in the queue. If reached, |
|
825
|
|
|
the process wil block until a batch is popped from the queue. |
|
826
|
|
|
|
|
827
|
|
|
""" |
|
828
|
|
|
def __init__(self, data_stream, max_batches): |
|
829
|
|
|
self.data_stream = data_stream |
|
830
|
|
|
self.batches = Queue(max_batches) |
|
831
|
|
|
self.run_background = True |
|
832
|
|
|
|
|
833
|
|
|
def main(self): |
|
834
|
|
|
while True: |
|
835
|
|
|
iterator = self.data_stream.get_epoch_iterator() |
|
836
|
|
|
for batch in iterator: |
|
837
|
|
|
self.batches.put(batch) |
|
838
|
|
|
self.batches.put(StopIteration) |
|
839
|
|
|
|
|
840
|
|
|
def get_next_data(self): |
|
841
|
|
|
return self.batches.get() |
|
842
|
|
|
|
|
843
|
|
|
|
|
844
|
|
|
class MultiProcessing(Transformer): |
|
845
|
|
|
"""Cache batches from the stream in a separate process. |
|
846
|
|
|
|
|
847
|
|
|
To speed up training of your model, it can be worthwhile to load and |
|
848
|
|
|
process data in separate process. This is a simple implementation of |
|
849
|
|
|
such an approach that makes use of Python's :mod:`multiprocessing` |
|
850
|
|
|
module. |
|
851
|
|
|
|
|
852
|
|
|
Parameters |
|
853
|
|
|
---------- |
|
854
|
|
|
data_stream : :class:`DataStream` or :class:`Transformer` |
|
855
|
|
|
The data stream to read batches from in the separate process. |
|
856
|
|
|
max_store : int, optional |
|
857
|
|
|
The maximum number of batches to keep in the queue. |
|
858
|
|
|
|
|
859
|
|
|
Notes |
|
860
|
|
|
----- |
|
861
|
|
|
This approach incurs an overhead from the need to serialize batches in |
|
862
|
|
|
order to send them to the main process. This should be acceptable if |
|
863
|
|
|
your model's training calls take significantly longer than reading a |
|
864
|
|
|
batch of data does, but for fast models or slow data pipelines a more |
|
865
|
|
|
robust approach might need to be considered. |
|
866
|
|
|
|
|
867
|
|
|
""" |
|
868
|
|
|
def __init__(self, data_stream, max_store=100, **kwargs): |
|
869
|
|
|
if data_stream.axis_labels: |
|
870
|
|
|
kwargs.setdefault('axis_labels', data_stream.axis_labels.copy()) |
|
871
|
|
|
super(MultiProcessing, self).__init__( |
|
872
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
873
|
|
|
self.background = BackgroundProcess(data_stream, max_store) |
|
874
|
|
|
self.proc = Process(target=self.background.main) |
|
875
|
|
|
self.proc.daemon = True |
|
876
|
|
|
self.proc.start() |
|
877
|
|
|
|
|
878
|
|
|
def get_data(self, request=None): |
|
879
|
|
|
if request is not None: |
|
880
|
|
|
raise ValueError |
|
881
|
|
|
data = self.background.get_next_data() |
|
882
|
|
|
if data == StopIteration: |
|
883
|
|
|
raise StopIteration |
|
884
|
|
|
return data |
|
885
|
|
|
|
|
886
|
|
|
|
|
887
|
|
|
class Rename(AgnosticTransformer): |
|
888
|
|
|
"""Renames the sources of the stream. |
|
889
|
|
|
|
|
890
|
|
|
Parameters |
|
891
|
|
|
---------- |
|
892
|
|
|
data_stream : :class:`DataStream` or :class:`Transformer`. |
|
893
|
|
|
The data stream. |
|
894
|
|
|
names : dict |
|
895
|
|
|
A dictionary mapping the old and new names of the sources |
|
896
|
|
|
to rename. |
|
897
|
|
|
on_non_existent : str, optional |
|
898
|
|
|
Desired behaviour when a source specified as a key in `names` |
|
899
|
|
|
is not provided by the streams: see `on_overwrite` above for |
|
900
|
|
|
description of possible values. Default is 'raise'. |
|
901
|
|
|
|
|
902
|
|
|
""" |
|
903
|
|
|
def __init__(self, data_stream, names, on_non_existent='raise', **kwargs): |
|
904
|
|
|
if on_non_existent not in ('raise', 'ignore', 'warn'): |
|
905
|
|
|
raise ValueError("on_non_existent must be one of 'raise', " |
|
906
|
|
|
"'ignore', 'warn'") |
|
907
|
|
|
# We allow duplicate values in the full dictionary, but those |
|
908
|
|
|
# that correspond to keys that are real sources in the data stream |
|
909
|
|
|
# must be unique. This lets you use one piece of code including |
|
910
|
|
|
# a Rename transformer to map disparately named sources in |
|
911
|
|
|
# different datasets to a common name. |
|
912
|
|
|
usable_names = {k: v for k, v in iteritems(names) |
|
913
|
|
|
if k in data_stream.sources} |
|
914
|
|
|
if len(set(usable_names.values())) != len(usable_names): |
|
915
|
|
|
raise KeyError("multiple old source names cannot map to " |
|
916
|
|
|
"the same new source name") |
|
917
|
|
|
sources = list(data_stream.sources) |
|
918
|
|
|
sources_lookup = {n: i for i, n in enumerate(sources)} |
|
919
|
|
|
for old, new in iteritems(names): |
|
920
|
|
|
if new in sources_lookup and new not in names: |
|
921
|
|
|
if old in usable_names: |
|
922
|
|
|
message = ("Renaming source '{}' to '{}' " |
|
923
|
|
|
"would create two sources named '{}'" |
|
924
|
|
|
.format(old, new, new)) |
|
925
|
|
|
raise KeyError(message) |
|
926
|
|
|
if old not in sources_lookup: |
|
927
|
|
|
message = ("Renaming source '{}' to '{}': " |
|
928
|
|
|
"stream does not provide a source '{}'" |
|
929
|
|
|
.format(old, new, old)) |
|
930
|
|
|
if on_non_existent == 'raise': |
|
931
|
|
|
raise KeyError(message) |
|
932
|
|
|
else: |
|
933
|
|
|
log_level = {'warn': logging.WARNING, |
|
934
|
|
|
'ignore': logging.DEBUG} |
|
935
|
|
|
log.log(log_level[on_non_existent], message) |
|
936
|
|
|
else: |
|
937
|
|
|
sources[sources_lookup[old]] = new |
|
938
|
|
|
self.sources = tuple(sources) |
|
939
|
|
|
if data_stream.axis_labels: |
|
940
|
|
|
kwargs.setdefault( |
|
941
|
|
|
'axis_labels', |
|
942
|
|
|
dict((names[source] if source in names else source, labels) |
|
943
|
|
|
for (source, labels) in |
|
944
|
|
|
iteritems(data_stream.axis_labels))) |
|
945
|
|
|
super(Rename, self).__init__( |
|
946
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
947
|
|
|
|
|
948
|
|
|
def transform_any(self, data): |
|
949
|
|
|
return data |
|
950
|
|
|
|
|
951
|
|
|
|
|
952
|
|
|
class FilterSources(AgnosticTransformer): |
|
953
|
|
|
"""Selects a subset of the stream sources. |
|
954
|
|
|
|
|
955
|
|
|
Order of data stream's sources is maintained. The order of sources |
|
956
|
|
|
given as parameter to FilterSources does not matter. |
|
957
|
|
|
|
|
958
|
|
|
Parameters |
|
959
|
|
|
---------- |
|
960
|
|
|
data_stream : :class:`AbstractDataStream` or :class:`Transformer`. |
|
961
|
|
|
The data stream. |
|
962
|
|
|
sources : tuple of strings |
|
963
|
|
|
The names of the data sources returned by this transformer. |
|
964
|
|
|
Must be a subset of the sources given by the stream. |
|
965
|
|
|
|
|
966
|
|
|
""" |
|
967
|
|
|
def __init__(self, data_stream, sources, **kwargs): |
|
968
|
|
|
if any(source not in data_stream.sources for source in sources): |
|
969
|
|
|
raise ValueError("sources must all be contained in " |
|
970
|
|
|
"data_stream.sources") |
|
971
|
|
|
if data_stream.axis_labels: |
|
972
|
|
|
kwargs.setdefault('axis_labels', |
|
973
|
|
|
dict((source, labels) for (source, labels) |
|
974
|
|
|
in iteritems(data_stream.axis_labels) |
|
975
|
|
|
if source in sources)) |
|
976
|
|
|
super(FilterSources, self).__init__( |
|
977
|
|
|
data_stream, data_stream.produces_examples, **kwargs) |
|
978
|
|
|
|
|
979
|
|
|
# keep order of data_stream.sources |
|
980
|
|
|
self.sources = tuple(s for s in data_stream.sources if s in sources) |
|
981
|
|
|
|
|
982
|
|
|
def transform_any(self, data): |
|
983
|
|
|
return [d for d, s in izip(data, self.data_stream.sources) |
|
984
|
|
|
if s in self.sources] |
|
985
|
|
|
|