|
1
|
|
|
from collections import OrderedDict, Counter |
|
2
|
|
|
import logging |
|
3
|
|
|
|
|
4
|
|
|
from picklable_itertools.extras import equizip |
|
5
|
|
|
import theano |
|
6
|
|
|
from theano import tensor |
|
7
|
|
|
|
|
8
|
|
|
from blocks.utils import dict_subset |
|
9
|
|
|
from blocks.monitoring.aggregation import (_DataIndependent, Mean, |
|
10
|
|
|
TakeLast, MonitoredQuantity) |
|
11
|
|
|
from blocks.graph import ComputationGraph |
|
12
|
|
|
from blocks.utils import reraise_as |
|
13
|
|
|
|
|
14
|
|
|
logger = logging.getLogger(__name__) |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
def _validate_variable_names(variables): |
|
18
|
|
|
"""Check for missing and duplicate variable names.""" |
|
19
|
|
|
variable_names = [v.name for v in variables] |
|
20
|
|
|
name_counts = Counter(variable_names) |
|
21
|
|
|
if None in name_counts: |
|
22
|
|
|
none_names = [v for v in variables if v.name is None] |
|
23
|
|
|
raise ValueError('Variables must have names: {}'.format(none_names)) |
|
24
|
|
|
|
|
25
|
|
|
if any(v > 1 for v in name_counts.values()): |
|
26
|
|
|
raise ValueError("Variables should have unique names." |
|
27
|
|
|
" Duplicates: {}" |
|
28
|
|
|
.format(', '.join(k for k, v in name_counts.items() |
|
29
|
|
|
if v > 1))) |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class MonitoredQuantityBuffer(object): |
|
33
|
|
|
"""Intermediate results of aggregating values of monitored-quantity. |
|
34
|
|
|
|
|
35
|
|
|
Aggregate results for a list of monitored-quantity for every |
|
36
|
|
|
single batch. Provides initialization and readout routines to |
|
37
|
|
|
initialize each quantity and capture its aggregated results. |
|
38
|
|
|
|
|
39
|
|
|
|
|
40
|
|
|
Parameters |
|
41
|
|
|
---------- |
|
42
|
|
|
quantities : list of :class:`MonitoredQuantity` |
|
43
|
|
|
The quantity names are used as record names in the logs. Hence, all |
|
44
|
|
|
the quantity names must be unique. |
|
45
|
|
|
|
|
46
|
|
|
Attributes |
|
47
|
|
|
---------- |
|
48
|
|
|
requires : list of :class:`~tensor.TensorVariable` |
|
49
|
|
|
Needed to calculate monitored-quantities. |
|
50
|
|
|
quantity_names : list of str |
|
51
|
|
|
Names of quantities. |
|
52
|
|
|
inputs : list of :class:`~tensor.TensorVariable` |
|
53
|
|
|
The list of inputs needed for variables in `requires`. |
|
54
|
|
|
|
|
55
|
|
|
""" |
|
56
|
|
|
def __init__(self, quantities): |
|
57
|
|
|
self.quantities = quantities |
|
58
|
|
|
requires = [] |
|
59
|
|
|
for quantity in quantities: |
|
60
|
|
|
requires += quantity.requires |
|
61
|
|
|
self.requires = list(set(requires)) |
|
62
|
|
|
self._initialized = False |
|
63
|
|
|
|
|
64
|
|
|
self.quantity_names = [q.name for q in self.quantities] |
|
65
|
|
|
self._computation_graph = ComputationGraph(self.requires) |
|
66
|
|
|
self.inputs = self._computation_graph.inputs |
|
67
|
|
|
|
|
68
|
|
|
def initialize_quantities(self): |
|
69
|
|
|
"""Initialize the quantities.""" |
|
70
|
|
|
self._initialized = True |
|
71
|
|
|
for quantity in self.quantities: |
|
72
|
|
|
quantity.initialize() |
|
73
|
|
|
|
|
74
|
|
|
def get_aggregated_values(self): |
|
75
|
|
|
"""Get the aggregated values.""" |
|
76
|
|
|
if not self._initialized: |
|
77
|
|
|
raise Exception("To readout you must first initialize, then" |
|
78
|
|
|
"process batches!") |
|
79
|
|
|
else: |
|
80
|
|
|
ret_vals = [q.get_aggregated_value() for q in self.quantities] |
|
81
|
|
|
return dict(zip(self.quantity_names, ret_vals)) |
|
82
|
|
|
|
|
83
|
|
|
def aggregate_quantities(self, numerical_values): |
|
84
|
|
|
"""Aggregate the results for every batch.""" |
|
85
|
|
|
if not self._initialized: |
|
86
|
|
|
raise Exception("To readout you must first initialize, then" |
|
87
|
|
|
"process batches!") |
|
88
|
|
|
else: |
|
89
|
|
|
for quantity in self.quantities: |
|
90
|
|
|
quantity.aggregate( |
|
91
|
|
|
*[numerical_values[self.requires.index(requirement)] |
|
92
|
|
|
for requirement in quantity.requires]) |
|
93
|
|
|
|
|
94
|
|
|
|
|
95
|
|
|
class AggregationBuffer(object): |
|
96
|
|
|
"""Intermediate results of aggregating values of Theano variables. |
|
97
|
|
|
|
|
98
|
|
|
Encapsulates aggregators for a list of Theano variables. Collects |
|
99
|
|
|
the respective updates and provides initialization and readout |
|
100
|
|
|
routines. |
|
101
|
|
|
|
|
102
|
|
|
|
|
103
|
|
|
Parameters |
|
104
|
|
|
---------- |
|
105
|
|
|
variables : list of :class:`~tensor.TensorVariable` |
|
106
|
|
|
The variable names are used as record names in the logs. Hence, all |
|
107
|
|
|
the variable names must be unique. |
|
108
|
|
|
use_take_last : bool |
|
109
|
|
|
When ``True``, the :class:`TakeLast` aggregation scheme is used |
|
110
|
|
|
instead of :class:`_DataIndependent` for those variables that |
|
111
|
|
|
do not require data to be computed. |
|
112
|
|
|
|
|
113
|
|
|
Attributes |
|
114
|
|
|
---------- |
|
115
|
|
|
initialization_updates : list of tuples |
|
116
|
|
|
Initialization updates of the aggregators. |
|
117
|
|
|
accumulation_updates : list of tuples |
|
118
|
|
|
Accumulation updates of the aggregators. |
|
119
|
|
|
readout_variables : dict |
|
120
|
|
|
A dictionary of record names to :class:`~tensor.TensorVariable` |
|
121
|
|
|
representing the aggregated values. |
|
122
|
|
|
inputs : list of :class:`~tensor.TensorVariable` |
|
123
|
|
|
The list of inputs needed for accumulation. |
|
124
|
|
|
|
|
125
|
|
|
""" |
|
126
|
|
|
def __init__(self, variables, use_take_last=False): |
|
127
|
|
|
_validate_variable_names(variables) |
|
128
|
|
|
self.variables = variables |
|
129
|
|
|
self.variable_names = [v.name for v in self.variables] |
|
130
|
|
|
self.use_take_last = use_take_last |
|
131
|
|
|
self._computation_graph = ComputationGraph(self.variables) |
|
132
|
|
|
self.inputs = self._computation_graph.inputs |
|
133
|
|
|
|
|
134
|
|
|
self._initialized = False |
|
135
|
|
|
self._create_aggregators() |
|
136
|
|
|
self._compile() |
|
137
|
|
|
|
|
138
|
|
|
def _create_aggregators(self): |
|
139
|
|
|
"""Create aggregators and collect updates.""" |
|
140
|
|
|
self.initialization_updates = [] |
|
141
|
|
|
self.accumulation_updates = [] |
|
142
|
|
|
self.readout_variables = OrderedDict() |
|
143
|
|
|
|
|
144
|
|
|
for v in self.variables: |
|
145
|
|
|
logger.debug('variable to evaluate: %s', v.name) |
|
146
|
|
|
if not hasattr(v.tag, 'aggregation_scheme'): |
|
147
|
|
|
if not self._computation_graph.has_inputs(v): |
|
148
|
|
|
scheme = (TakeLast if self.use_take_last |
|
149
|
|
|
else _DataIndependent) |
|
150
|
|
|
logger.debug('Using %s aggregation scheme' |
|
151
|
|
|
' for %s since it does not depend on' |
|
152
|
|
|
' the data', scheme.__name__, v.name) |
|
153
|
|
|
v.tag.aggregation_scheme = scheme(v) |
|
154
|
|
|
else: |
|
155
|
|
|
logger.debug('Using the default ' |
|
156
|
|
|
' (average over minibatches)' |
|
157
|
|
|
' aggregation scheme for %s', v.name) |
|
158
|
|
|
v.tag.aggregation_scheme = Mean(v, 1.0) |
|
159
|
|
|
|
|
160
|
|
|
aggregator = v.tag.aggregation_scheme.get_aggregator() |
|
161
|
|
|
self.initialization_updates.extend( |
|
162
|
|
|
aggregator.initialization_updates) |
|
163
|
|
|
self.accumulation_updates.extend(aggregator.accumulation_updates) |
|
164
|
|
|
self.readout_variables[v.name] = aggregator.readout_variable |
|
165
|
|
|
|
|
166
|
|
|
def _compile(self): |
|
167
|
|
|
"""Compiles Theano functions. |
|
168
|
|
|
|
|
169
|
|
|
.. todo:: |
|
170
|
|
|
|
|
171
|
|
|
The current compilation method does not account for updates |
|
172
|
|
|
attached to `ComputationGraph` elements. Compiling should |
|
173
|
|
|
be out-sourced to `ComputationGraph` to deal with it. |
|
174
|
|
|
|
|
175
|
|
|
""" |
|
176
|
|
|
logger.debug("Compiling initialization and readout functions") |
|
177
|
|
|
if self.initialization_updates: |
|
178
|
|
|
self._initialize_fun = theano.function( |
|
179
|
|
|
[], [], updates=self.initialization_updates) |
|
180
|
|
|
else: |
|
181
|
|
|
self._initialize_fun = None |
|
182
|
|
|
|
|
183
|
|
|
# We need to call `as_tensor_variable` here |
|
184
|
|
|
# to avoid returning `CudaNdarray`s to the user, which |
|
185
|
|
|
# happens otherwise under some circumstances (see |
|
186
|
|
|
# https://groups.google.com/forum/#!topic/theano-users/H3vkDN-Shok) |
|
187
|
|
|
self._readout_fun = theano.function( |
|
188
|
|
|
[], [tensor.as_tensor_variable(v) |
|
189
|
|
|
for v in self.readout_variables.values()]) |
|
190
|
|
|
logger.debug("Initialization and readout functions compiled") |
|
191
|
|
|
|
|
192
|
|
|
def initialize_aggregators(self): |
|
193
|
|
|
"""Initialize the aggregators.""" |
|
194
|
|
|
self._initialized = True |
|
195
|
|
|
if self._initialize_fun is not None: |
|
196
|
|
|
self._initialize_fun() |
|
197
|
|
|
|
|
198
|
|
|
def get_aggregated_values(self): |
|
199
|
|
|
"""Readout the aggregated values.""" |
|
200
|
|
|
if not self._initialized: |
|
201
|
|
|
raise Exception("To readout you must first initialize, then " |
|
202
|
|
|
"process batches!") |
|
203
|
|
|
ret_vals = self._readout_fun() |
|
204
|
|
|
return OrderedDict(equizip(self.variable_names, ret_vals)) |
|
205
|
|
|
|
|
206
|
|
|
|
|
207
|
|
|
class DatasetEvaluator(object): |
|
208
|
|
|
"""A DatasetEvaluator evaluates many Theano variables or other quantities. |
|
209
|
|
|
|
|
210
|
|
|
The DatasetEvaluator provides a do-it-all method, :meth:`evaluate`, |
|
211
|
|
|
which computes values of ``variables`` on a dataset. |
|
212
|
|
|
|
|
213
|
|
|
Alternatively, methods :meth:`initialize_aggregators`, |
|
214
|
|
|
:meth:`process_batch`, :meth:`get_aggregated_values` can be used with a |
|
215
|
|
|
custom loop over data. |
|
216
|
|
|
|
|
217
|
|
|
The values computed on subsets of the given dataset are aggregated |
|
218
|
|
|
using the :class:`AggregationScheme`s provided in the |
|
219
|
|
|
`aggregation_scheme` tags. If no tag is given, the value is **averaged |
|
220
|
|
|
over minibatches**. However, care is taken to ensure that variables |
|
221
|
|
|
which do not depend on data are not unnecessarily recomputed. |
|
222
|
|
|
|
|
223
|
|
|
Parameters |
|
224
|
|
|
---------- |
|
225
|
|
|
variables : list of :class:`~tensor.TensorVariable` and |
|
226
|
|
|
:class:`MonitoredQuantity` |
|
227
|
|
|
The variable names are used as record names in the logs. Hence, all |
|
228
|
|
|
the names must be unique. |
|
229
|
|
|
|
|
230
|
|
|
Each variable can be tagged with an :class:`AggregationScheme` that |
|
231
|
|
|
specifies how the value can be computed for a data set by |
|
232
|
|
|
aggregating minibatches. |
|
233
|
|
|
updates : list of tuples or :class:`~collections.OrderedDict` or None |
|
234
|
|
|
:class:`~tensor.TensorSharedVariable` updates to be performed |
|
235
|
|
|
during evaluation. This parameter is only for Theano variables. |
|
236
|
|
|
Be careful not to update any model parameters as this is not |
|
237
|
|
|
intended to alter your model in any meaningfullway. A typical |
|
238
|
|
|
use case of this option arises when the theano function used |
|
239
|
|
|
for evaluation contains a call to:function:`~theano.scan` which |
|
240
|
|
|
might have returned shared variable updates. |
|
241
|
|
|
|
|
242
|
|
|
""" |
|
243
|
|
|
def __init__(self, variables, updates=None): |
|
244
|
|
|
_validate_variable_names(variables) |
|
245
|
|
|
theano_variables = [] |
|
246
|
|
|
monitored_quantities = [] |
|
247
|
|
|
for variable in variables: |
|
248
|
|
|
if isinstance(variable, MonitoredQuantity): |
|
249
|
|
|
monitored_quantities.append(variable) |
|
250
|
|
|
else: |
|
251
|
|
|
theano_variables.append(variable) |
|
252
|
|
|
self.theano_variables = theano_variables |
|
253
|
|
|
self.monitored_quantities = monitored_quantities |
|
254
|
|
|
self.theano_buffer = AggregationBuffer(theano_variables) |
|
255
|
|
|
self.monitored_quantities_buffer = MonitoredQuantityBuffer( |
|
256
|
|
|
monitored_quantities) |
|
257
|
|
|
self.updates = updates |
|
258
|
|
|
self._compile() |
|
259
|
|
|
|
|
260
|
|
|
def _compile(self): |
|
261
|
|
|
"""Compiles Theano functions. |
|
262
|
|
|
|
|
263
|
|
|
.. todo:: |
|
264
|
|
|
|
|
265
|
|
|
The current compilation method does not account for updates |
|
266
|
|
|
attached to `ComputationGraph` elements. Compiling should |
|
267
|
|
|
be out-sourced to `ComputationGraph` to deal with it. |
|
268
|
|
|
|
|
269
|
|
|
""" |
|
270
|
|
|
inputs = [] |
|
271
|
|
|
outputs = [] |
|
272
|
|
|
updates = None |
|
273
|
|
|
if self.theano_buffer.accumulation_updates: |
|
274
|
|
|
updates = OrderedDict() |
|
275
|
|
|
updates.update(self.theano_buffer.accumulation_updates) |
|
276
|
|
|
inputs += self.theano_buffer.inputs |
|
277
|
|
|
if self.updates: |
|
278
|
|
|
# Handle the case in which we dont have any theano variables |
|
279
|
|
|
# to evaluate but we do have MonitoredQuantity |
|
280
|
|
|
# that may require an update of their own |
|
281
|
|
|
if updates is None: |
|
282
|
|
|
updates = self.updates |
|
283
|
|
|
else: |
|
284
|
|
|
updates.update(self.updates) |
|
285
|
|
|
inputs += self.monitored_quantities_buffer.inputs |
|
286
|
|
|
outputs = self.monitored_quantities_buffer.requires |
|
287
|
|
|
|
|
288
|
|
|
if inputs != []: |
|
289
|
|
|
self.unique_inputs = list(set(inputs)) |
|
290
|
|
|
self._aggregate_fun = theano.function(self.unique_inputs, |
|
291
|
|
|
outputs, |
|
292
|
|
|
updates=updates) |
|
293
|
|
|
else: |
|
294
|
|
|
self._aggregate_fun = None |
|
295
|
|
|
|
|
296
|
|
|
def initialize_aggregators(self): |
|
297
|
|
|
self.theano_buffer.initialize_aggregators() |
|
298
|
|
|
self.monitored_quantities_buffer.initialize_quantities() |
|
299
|
|
|
|
|
300
|
|
|
def process_batch(self, batch): |
|
301
|
|
|
try: |
|
302
|
|
|
input_names = [v.name for v in self.unique_inputs] |
|
303
|
|
|
batch = dict_subset(batch, input_names) |
|
304
|
|
|
except KeyError: |
|
305
|
|
|
reraise_as( |
|
306
|
|
|
"Not all data sources required for monitoring were" |
|
307
|
|
|
" provided. The list of required data sources:" |
|
308
|
|
|
" {}.".format(input_names)) |
|
309
|
|
|
if self._aggregate_fun is not None: |
|
310
|
|
|
numerical_values = self._aggregate_fun(**batch) |
|
311
|
|
|
self.monitored_quantities_buffer.aggregate_quantities( |
|
312
|
|
|
numerical_values) |
|
313
|
|
|
|
|
314
|
|
|
def get_aggregated_values(self): |
|
315
|
|
|
values = self.theano_buffer.get_aggregated_values() |
|
316
|
|
|
values.update( |
|
317
|
|
|
self.monitored_quantities_buffer.get_aggregated_values()) |
|
318
|
|
|
return values |
|
319
|
|
|
|
|
320
|
|
|
def evaluate(self, data_stream): |
|
321
|
|
|
"""Compute the variables over a data stream. |
|
322
|
|
|
|
|
323
|
|
|
Parameters |
|
324
|
|
|
---------- |
|
325
|
|
|
data_stream : instance of :class:`.DataStream` |
|
326
|
|
|
The data stream. Only the first epoch of data is used. |
|
327
|
|
|
|
|
328
|
|
|
Returns |
|
329
|
|
|
------- |
|
330
|
|
|
A mapping from record names to the values computed on the provided |
|
331
|
|
|
dataset. |
|
332
|
|
|
|
|
333
|
|
|
""" |
|
334
|
|
|
self.initialize_aggregators() |
|
335
|
|
|
if self._aggregate_fun is not None: |
|
336
|
|
|
for batch in data_stream.get_epoch_iterator(as_dict=True): |
|
337
|
|
|
self.process_batch(batch) |
|
338
|
|
|
else: |
|
339
|
|
|
logger.debug( |
|
340
|
|
|
'Only data independent variables were given,' |
|
341
|
|
|
'will not iterate the over data!') |
|
342
|
|
|
|
|
343
|
|
|
return self.get_aggregated_values() |
|
344
|
|
|
|