1
|
|
|
import inspect |
2
|
|
|
from blocks.extensions import SimpleExtension |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
class SharedVariableModifier(SimpleExtension): |
6
|
|
|
"""Adjusts shared variable parameter using some function. |
7
|
|
|
|
8
|
|
|
Applies a function to compute the new value of a shared parameter each |
9
|
|
|
iteration. |
10
|
|
|
|
11
|
|
|
This class can be used to adapt over the training process parameters |
12
|
|
|
like learning rate, momentum, etc. |
13
|
|
|
|
14
|
|
|
Parameters |
15
|
|
|
---------- |
16
|
|
|
parameter : :class:`~tensor.TensorSharedVariable` |
17
|
|
|
Shared variable to be adjusted |
18
|
|
|
function : callable |
19
|
|
|
A function which outputs a numeric value to which the |
20
|
|
|
given shared variable will be set and may take one or two |
21
|
|
|
arguments. |
22
|
|
|
|
23
|
|
|
In the first case, function that takes the total number of |
24
|
|
|
iterations done (``int``) as an input. |
25
|
|
|
|
26
|
|
|
In the second case, it is a function which takes number of |
27
|
|
|
iterations done (``int``) and old value of the shared variable |
28
|
|
|
(with the same dtype as `parameter`). |
29
|
|
|
num_args : int, optional |
30
|
|
|
The number of arguments to pass to the function. If unspecified, |
31
|
|
|
it will be inferred. This is useful if you are using function-like |
32
|
|
|
objects for which the arity of the function cannot be inferred. |
33
|
|
|
|
34
|
|
|
Notes |
35
|
|
|
----- |
36
|
|
|
This class includes a method ``function`` that calls the function |
37
|
|
|
passed in the constructor and a ``num_args`` property which computes |
38
|
|
|
the number of arguments to use by inspecting the function object. |
39
|
|
|
Subclasses may override a method called ``function`` and/or |
40
|
|
|
the ``num_args`` property and instead pass ``None`` to the superclass |
41
|
|
|
constructor. This can be used to bypass certain serialization issues |
42
|
|
|
on Legacy Python regarding the unpicklability of instance |
43
|
|
|
method objects. |
44
|
|
|
|
45
|
|
|
""" |
46
|
|
|
def __init__(self, parameter, function, num_args=None, **kwargs): |
47
|
|
|
kwargs.setdefault("after_batch", True) |
48
|
|
|
super(SharedVariableModifier, self).__init__(**kwargs) |
49
|
|
|
self.parameter = parameter |
50
|
|
|
self._function = function |
51
|
|
|
self._num_args = num_args |
52
|
|
|
|
53
|
|
|
@property |
54
|
|
|
def num_args(self): |
55
|
|
|
if self._num_args is None: |
56
|
|
|
self._num_args = len(inspect.getargspec(self._function).args) |
57
|
|
|
return self._num_args |
58
|
|
|
|
59
|
|
|
def function(self, *args): |
60
|
|
|
return self._function(*args) |
61
|
|
|
|
62
|
|
|
def do(self, which_callback, *args): |
63
|
|
|
iterations_done = self.main_loop.log.status['iterations_done'] |
64
|
|
|
if self.num_args == 1: |
65
|
|
|
new_value = self.function(iterations_done) |
66
|
|
|
else: |
67
|
|
|
old_value = self.parameter.get_value() |
68
|
|
|
new_value = self.function(iterations_done, old_value) |
69
|
|
|
self.parameter.set_value(new_value) |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
class TrackTheBest(SimpleExtension): |
73
|
|
|
"""Check if a log quantity has the minimum/maximum value so far. |
74
|
|
|
|
75
|
|
|
Parameters |
76
|
|
|
---------- |
77
|
|
|
record_name : str |
78
|
|
|
The name of the record to track. |
79
|
|
|
notification_name : str, optional |
80
|
|
|
The name for the record to be made in the log when the current |
81
|
|
|
value of the tracked quantity is the best so far. It not given, |
82
|
|
|
'record_name' plus "best_so_far" suffix is used. |
83
|
|
|
choose_best : callable, optional |
84
|
|
|
A function that takes the current value and the best so far |
85
|
|
|
and return the best of two. By default :func:`min`, which |
86
|
|
|
corresponds to tracking the minimum value. |
87
|
|
|
|
88
|
|
|
Attributes |
89
|
|
|
---------- |
90
|
|
|
best_name : str |
91
|
|
|
The name of the status record to keep the best value so far. |
92
|
|
|
notification_name : str |
93
|
|
|
The name of the record written to the log when the current |
94
|
|
|
value of the tracked quantity is the best so far. |
95
|
|
|
|
96
|
|
|
Notes |
97
|
|
|
----- |
98
|
|
|
In the likely case that you are relying on another extension to |
99
|
|
|
add the tracked quantity to the log, make sure to place this |
100
|
|
|
extension *after* the extension that writes the quantity to the log |
101
|
|
|
in the `extensions` argument to :class:`blocks.main_loop.MainLoop`. |
102
|
|
|
|
103
|
|
|
""" |
104
|
|
|
def __init__(self, record_name, notification_name=None, |
105
|
|
|
choose_best=min, **kwargs): |
106
|
|
|
self.record_name = record_name |
107
|
|
|
if not notification_name: |
108
|
|
|
notification_name = record_name + "_best_so_far" |
109
|
|
|
self.notification_name = notification_name |
110
|
|
|
self.best_name = "best_" + record_name |
111
|
|
|
self.choose_best = choose_best |
112
|
|
|
kwargs.setdefault("after_epoch", True) |
113
|
|
|
super(TrackTheBest, self).__init__(**kwargs) |
114
|
|
|
|
115
|
|
|
def do(self, which_callback, *args): |
116
|
|
|
current_value = self.main_loop.log.current_row.get(self.record_name) |
117
|
|
|
if current_value is None: |
118
|
|
|
return |
119
|
|
|
best_value = self.main_loop.status.get(self.best_name, None) |
120
|
|
|
if (best_value is None or |
121
|
|
|
(current_value != best_value and |
122
|
|
|
self.choose_best(current_value, best_value) == |
123
|
|
|
current_value)): |
124
|
|
|
self.main_loop.status[self.best_name] = current_value |
125
|
|
|
self.main_loop.log.current_row[self.notification_name] = True |
126
|
|
|
|