Completed
Pull Request — master (#941)
by David
01:36
created

blocks.graph.prepare_replacement()   A

Complexity

Conditions 1

Size

Total Lines 8

Duplication

Lines 0
Ratio 0 %
Metric Value
cc 1
dl 0
loc 8
rs 9.4285
1
import collections
2
from theano import tensor
3
4
from . import add_annotation
5
from ..roles import (BATCH_NORM_OFFSET, BATCH_NORM_DIVISOR,
6
                     BATCH_NORM_POPULATION_STATISTICS,
7
                     BATCH_NORM_MINIBATCH_ESTIMATE, INPUT, add_role,
8
                     has_roles)
9
10
11
def batch_normalize(computation_graph, epsilon=1e-4):
12
    """Activate batch normalization in a graph.
13
14
    Parameters
15
    ----------
16
    computation_graph : instance of :class:`ComputationGraph`
17
        The computation graph containing :class:`BatchNormalization`
18
        brick applications.
19
    epsilon : float, optional
20
        The stabilizing constant for the minibatch standard deviation
21
        computation. Added to the variance inside the square root, as
22
        in the batch normalization paper.
23
24
    Returns
25
    -------
26
    batch_normed_computation_graph : instance of :class:`ComputationGraph`
27
        The computation graph, with :class:`BatchNormalization`
28
        applications transformed to use minibatch statistics instead
29
        of accumulated population statistics.
30
    population_to_minibatch : OrderedDict
31
        A mapping of variables used in the original graph for population
32
        means and standard deviations to the minibatch-derived quantities
33
        that replace them. Useful to define updates in order to track
34
        the approximate population statistics during learning.
35
36
    Notes
37
    -----
38
    Assumes the minibatch axis is 0. Other axes are unsupported at
39
    this time.
40
41
    """
42
    # Avoid a circular import.
43
    from ..filter import VariableFilter, get_application_call
44
45
    # Create filters for variables involved in a batch normalization brick
46
    # application.
47
    def make_variable_filter(role):
48
        return VariableFilter(roles=[role])
49
50
    mean_filter, stdev_filter, input_filter = map(make_variable_filter,
51
                                                  [BATCH_NORM_OFFSET,
52
                                                   BATCH_NORM_DIVISOR, INPUT])
53
54
    # Group means, standard deviations, and inputs into dicts indexed by
55
    # application call.
56
    def get_application_call_dict(variable_filter):
57
        return collections.OrderedDict((get_application_call(v), v) for v in
58
                                       variable_filter(computation_graph))
59
60
    means, stdevs, inputs = map(get_application_call_dict,
61
                                [mean_filter, stdev_filter, input_filter])
62
63
    assert (set(means.keys()) == set(stdevs.keys()) and
64
            set(means.keys()) == set(inputs.keys()))
65
    assert set(means.values()).isdisjoint(stdevs.values())
66
67
    replacements = []
68
    # Perform replacement for each application call.
69
    for application_call in means:
70
        axes = tuple(i for i, b in enumerate(means[application_call]
71
                                             .broadcastable) if b)
72
        minibatch_mean = inputs[application_call].mean(axis=axes,
73
                                                       keepdims=True)
74
        minibatch_mean.name = 'minibatch_offset'
75
        # Stabilize in the same way as the batch normalization manuscript.
76
        minibatch_std = tensor.sqrt(tensor.var(inputs[application_call],
77
                                               axis=axes, keepdims=True) +
78
                                    epsilon)
79
        minibatch_std.name = 'minibatch_divisor'
80
81
        def prepare_replacement(old, new, role, application_call):
82
            """Add roles and tags to replaced variables."""
83
            add_role(new, BATCH_NORM_MINIBATCH_ESTIMATE)
84
            add_role(new, role)
85
            add_annotation(new, application_call)
86
            add_annotation(new, application_call.application.brick)
87
            new.tag.replacement_of = old
88
            replacements.append((old, new))
89
90
        prepare_replacement(means[application_call], minibatch_mean,
91
                            BATCH_NORM_OFFSET, application_call)
92
        prepare_replacement(stdevs[application_call], minibatch_std,
93
                            BATCH_NORM_DIVISOR, application_call)
94
95
    new_graph = computation_graph.replace(replacements)
96
97
    population_to_minibatch = collections.OrderedDict()
98
    for original_graph_node, replacement in replacements:
99
        pop_stats = original_graph_node.owner.inputs[0]
100
        assert has_roles(pop_stats, [BATCH_NORM_POPULATION_STATISTICS])
101
        population_to_minibatch[pop_stats] = replacement
102
    return new_graph, population_to_minibatch
103