|
1
|
|
|
"""Extensions for monitoring the training process.""" |
|
2
|
|
|
import logging |
|
3
|
|
|
|
|
4
|
|
|
import theano |
|
5
|
|
|
|
|
6
|
|
|
from blocks.extensions import SimpleExtension, TrainingExtension |
|
7
|
|
|
from blocks.algorithms import DifferentiableCostMinimizer |
|
8
|
|
|
from blocks.monitoring.aggregation import MonitoredQuantity, take_last |
|
9
|
|
|
from blocks.monitoring.evaluators import ( |
|
10
|
|
|
AggregationBuffer, MonitoredQuantityBuffer, DatasetEvaluator) |
|
11
|
|
|
|
|
12
|
|
|
PREFIX_SEPARATOR = '_' |
|
13
|
|
|
logger = logging.getLogger(__name__) |
|
14
|
|
|
|
|
15
|
|
|
class MonitoringExtension(TrainingExtension): |
|
16
|
|
|
"""A mixin with logic shared by monitoring extensions. |
|
17
|
|
|
|
|
18
|
|
|
Parameters |
|
19
|
|
|
---------- |
|
20
|
|
|
prefix : str, optional |
|
21
|
|
|
The prefix for the log records done by the extension. It is |
|
22
|
|
|
appended to the variable names with an underscore as a separator. |
|
23
|
|
|
If not given, the names of the observed variables are used as is. |
|
24
|
|
|
|
|
25
|
|
|
""" |
|
26
|
|
|
def __init__(self, prefix=None, **kwargs): |
|
27
|
|
|
super(MonitoringExtension, self).__init__(**kwargs) |
|
28
|
|
|
self.prefix = prefix |
|
29
|
|
|
|
|
30
|
|
|
def _record_name(self, name): |
|
31
|
|
|
"""The record name for a variable name.""" |
|
32
|
|
|
return self.prefix + PREFIX_SEPARATOR + name if self.prefix else name |
|
33
|
|
|
|
|
34
|
|
|
def record_name(self, variable): |
|
35
|
|
|
"""The record name for a variable.""" |
|
36
|
|
|
return self._record_name(variable.name) |
|
37
|
|
|
|
|
38
|
|
|
def add_records(self, log, record_tuples): |
|
39
|
|
|
"""Helper function to add monitoring records to the log.""" |
|
40
|
|
|
for name, value in record_tuples: |
|
41
|
|
|
if not name: |
|
42
|
|
|
raise ValueError("monitor variable without name") |
|
43
|
|
|
log.current_row[self._record_name(name)] = value |
|
44
|
|
|
|
|
45
|
|
|
|
|
46
|
|
|
class DataStreamMonitoring(SimpleExtension, MonitoringExtension): |
|
47
|
|
|
"""Monitors Theano variables and monitored-quantities on a data stream. |
|
48
|
|
|
|
|
49
|
|
|
By default monitoring is done before the first and after every epoch. |
|
50
|
|
|
|
|
51
|
|
|
Parameters |
|
52
|
|
|
---------- |
|
53
|
|
|
variables : list of :class:`~tensor.TensorVariable` and |
|
54
|
|
|
:class:`MonitoredQuantity` |
|
55
|
|
|
The variables to monitor. The variable names are used as record |
|
56
|
|
|
names in the logs. |
|
57
|
|
|
updates : list of tuples or :class:`~collections.OrderedDict` or None |
|
58
|
|
|
:class:`~tensor.TensorSharedVariable` updates to be performed |
|
59
|
|
|
during evaluation. This parameter is only for Theano variables. |
|
60
|
|
|
Be careful not to update any model parameters as this is not |
|
61
|
|
|
intended to alter your model in any meaningful way. A typical |
|
62
|
|
|
use case of this option arises when the theano function used |
|
63
|
|
|
for evaluation contains a call to :func:`~theano.scan` which |
|
64
|
|
|
might have returned shared variable updates. |
|
65
|
|
|
data_stream : instance of :class:`.DataStream` |
|
66
|
|
|
The data stream to monitor on. A data epoch is requested |
|
67
|
|
|
each time monitoring is done. |
|
68
|
|
|
|
|
69
|
|
|
""" |
|
70
|
|
|
PREFIX_SEPARATOR = '_' |
|
71
|
|
|
|
|
72
|
|
|
def __init__(self, variables, data_stream, updates=None, **kwargs): |
|
73
|
|
|
kwargs.setdefault("after_epoch", True) |
|
74
|
|
|
kwargs.setdefault("before_first_epoch", True) |
|
75
|
|
|
super(DataStreamMonitoring, self).__init__(**kwargs) |
|
76
|
|
|
self._evaluator = DatasetEvaluator(variables, updates) |
|
77
|
|
|
self.data_stream = data_stream |
|
78
|
|
|
|
|
79
|
|
|
def do(self, callback_name, *args): |
|
|
|
|
|
|
80
|
|
|
"""Write the values of monitored variables to the log.""" |
|
81
|
|
|
logger.info("Monitoring on auxiliary data started") |
|
82
|
|
|
value_dict = self._evaluator.evaluate(self.data_stream) |
|
83
|
|
|
self.add_records(self.main_loop.log, value_dict.items()) |
|
84
|
|
|
logger.info("Monitoring on auxiliary data finished") |
|
85
|
|
|
|
|
86
|
|
|
|
|
87
|
|
|
class TrainingDataMonitoring(SimpleExtension, MonitoringExtension): |
|
88
|
|
|
"""Monitors values of Theano variables on training batches. |
|
89
|
|
|
|
|
90
|
|
|
Use this extension to monitor a quantity on every training batch |
|
91
|
|
|
cheaply. It integrates with the training algorithm in order to avoid |
|
92
|
|
|
recomputing same things several times. For instance, if you are |
|
93
|
|
|
training a network and you want to log the norm of the gradient on |
|
94
|
|
|
every batch, the backpropagation will only be done once. By |
|
95
|
|
|
controlling the frequency with which the :meth:`do` method is called, |
|
96
|
|
|
you can aggregate the monitored variables, e.g. only log the gradient |
|
97
|
|
|
norm average over an epoch. |
|
98
|
|
|
|
|
99
|
|
|
Parameters |
|
100
|
|
|
---------- |
|
101
|
|
|
variables : list of :class:`~tensor.TensorVariable` |
|
102
|
|
|
The variables to monitor. The variable names are used as record |
|
103
|
|
|
names in the logs. |
|
104
|
|
|
|
|
105
|
|
|
Notes |
|
106
|
|
|
----- |
|
107
|
|
|
All the monitored variables are evaluated _before_ the parameter |
|
108
|
|
|
update. |
|
109
|
|
|
|
|
110
|
|
|
Requires the training algorithm to be an instance of |
|
111
|
|
|
:class:`.DifferentiableCostMinimizer`. |
|
112
|
|
|
|
|
113
|
|
|
""" |
|
114
|
|
|
def __init__(self, variables, **kwargs): |
|
115
|
|
|
kwargs.setdefault("before_training", True) |
|
116
|
|
|
super(TrainingDataMonitoring, self).__init__(**kwargs) |
|
117
|
|
|
self.add_condition(['after_batch'], arguments=('just_accumulate',)) |
|
118
|
|
|
self._quantities = MonitoredQuantityBuffer( |
|
119
|
|
|
[v for v in variables |
|
120
|
|
|
if isinstance(v, MonitoredQuantity)]) |
|
121
|
|
|
self._required = AggregationBuffer( |
|
122
|
|
|
[take_last(v) for v in self._quantities.requires]) |
|
123
|
|
|
self._variables = AggregationBuffer( |
|
124
|
|
|
[v for v in variables |
|
125
|
|
|
if isinstance(v, theano.Variable)], |
|
126
|
|
|
use_take_last=True) |
|
127
|
|
|
self._last_time_called = -1 |
|
128
|
|
|
|
|
129
|
|
|
def do(self, callback_name, *args): |
|
130
|
|
|
"""Initializes the buffer or commits the values to the log. |
|
131
|
|
|
|
|
132
|
|
|
What this method does depends on from what callback it is called. |
|
133
|
|
|
When called within `before_training`, it initializes the |
|
134
|
|
|
aggregation buffer and instructs the training algorithm what |
|
135
|
|
|
additional computations should be carried at each step by adding |
|
136
|
|
|
corresponding updates to it. In all other cases it writes |
|
137
|
|
|
aggregated values of the monitored variables to the log. |
|
138
|
|
|
|
|
139
|
|
|
""" |
|
140
|
|
|
data, args = self.parse_args(callback_name, args) |
|
|
|
|
|
|
141
|
|
|
if callback_name == 'before_training': |
|
142
|
|
|
if not isinstance(self.main_loop.algorithm, |
|
143
|
|
|
DifferentiableCostMinimizer): |
|
144
|
|
|
raise ValueError |
|
145
|
|
|
self.main_loop.algorithm.add_updates( |
|
146
|
|
|
self._variables.accumulation_updates) |
|
147
|
|
|
self.main_loop.algorithm.add_updates( |
|
148
|
|
|
self._required.accumulation_updates) |
|
149
|
|
|
self._variables.initialize_aggregators() |
|
150
|
|
|
self._required.initialize_aggregators() |
|
151
|
|
|
self._quantities.initialize() |
|
152
|
|
|
else: |
|
153
|
|
|
# When called first time at any iterations, update |
|
154
|
|
|
# monitored non-Theano quantities |
|
155
|
|
|
if (self.main_loop.status['iterations_done'] > |
|
156
|
|
|
self._last_time_called): |
|
157
|
|
|
self._quantities.accumulate_quantities( |
|
158
|
|
|
self._required.get_aggregated_values().values()) |
|
159
|
|
|
self._required.initialize_aggregators() |
|
160
|
|
|
self._last_time_called = self.main_loop.status['iterations_done'] |
|
|
|
|
|
|
161
|
|
|
# If only called to update non-Theano quantities, |
|
162
|
|
|
# do just that |
|
163
|
|
|
if args == ('just_accumulate',): |
|
164
|
|
|
return |
|
165
|
|
|
# Otherwise, also output current values of from the accumulators |
|
166
|
|
|
# to the log. |
|
167
|
|
|
self.add_records(self.main_loop.log, |
|
168
|
|
|
self._variables.get_aggregated_values().items()) |
|
169
|
|
|
self._variables.initialize_aggregators() |
|
170
|
|
|
self.add_records(self.main_loop.log, |
|
171
|
|
|
self._quantities.get_aggregated_values().items()) |
|
172
|
|
|
self._quantities.initialize() |
|
173
|
|
|
|