| 1 |  |  | from theano.tensor.nnet import conv2d | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | from theano.tensor.nnet.abstract_conv import (AbstractConv2d_gradInputs, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  |                                               get_conv_output_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | from theano.tensor.signal.pool import pool_2d, Pool | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | from blocks.bricks import (Initializable, Feedforward, Sequence, Activation, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  |                            LinearLike) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | from blocks.bricks.base import application, Brick, lazy | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | from blocks.roles import add_role, FILTER, BIAS | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | from blocks.utils import shared_floatx_nans | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | class Convolutional(LinearLike): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |     """Performs a 2D convolution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |     filter_size : tuple | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |         The height and width of the filter (also called *kernels*). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |     num_filters : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |         Number of filters per channel. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |     num_channels : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |         Number of input channels in the image. For the first layer this is | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |         normally 1 for grayscale images and 3 for color (RGB) images. For | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |         subsequent layers this is equal to the number of filters output by | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |         the previous convolutional layer. The filters are pooled over the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |         channels. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |     batch_size : int, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |         Number of examples per batch. If given, this will be passed to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |         Theano convolution operator, possibly resulting in faster | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |         execution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |     image_size : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |         The height and width of the input (image or feature map). If given, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |         this will be passed to the Theano convolution operator, resulting | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |         in possibly faster execution times. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |     step : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |         The step (or stride) with which to slide the filters over the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |         image. Defaults to (1, 1). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |     border_mode : {'valid', 'full'}, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |         The border mode to use, see :func:`scipy.signal.convolve2d` for | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |         details. Defaults to 'valid'. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |     tied_biases : bool | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |         If ``True``, it indicates that the biases of every filter in this | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |         layer should be shared amongst all applications of that filter. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |         Setting this to ``False`` will untie the biases, yielding a | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |         separate bias for every location at which the filter is applied. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |         Defaults to ``False``. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |     # Make it possible to override the implementation of conv2d that gets | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |     # used, i.e. to use theano.sandbox.cuda.dnn.dnn_conv directly in order | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |     # to leverage features not yet available in Theano's standard conv2d. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |     # The function you override with here should accept at least the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |     # input and the kernels as positionals, and the keyword arguments | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |     # input_shape, subsample, border_mode, and filter_shape. If some of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |     # these are unsupported they should still be accepted and ignored, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |     # e.g. with a wrapper function that swallows **kwargs. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |     conv2d_impl = staticmethod(conv2d) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |     # Used to override the output shape computation for a given value of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |     # conv2d_impl. Should accept 4 positional arguments: the shape of an | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |     # image minibatch (with 4 elements: batch size, number of channels, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |     # height, and width), the shape of the filter bank (number of filters, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |     # number of output channels, filter height, filter width), the border | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |     # mode, and the step (vertical and horizontal strides). It is expected | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |     # to return a 4-tuple of (batch size, number of channels, output | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |     # height, output width). The first element of this tuple is not used | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |     # for anything by this brick. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |     get_output_shape = staticmethod(get_conv_output_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |     @lazy(allocation=['filter_size', 'num_filters', 'num_channels']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |     def __init__(self, filter_size, num_filters, num_channels, batch_size=None, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |                  image_size=(None, None), step=(1, 1), border_mode='valid', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |                  tied_biases=False, **kwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |         super(Convolutional, self).__init__(**kwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |         self.filter_size = filter_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |         self.num_filters = num_filters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |         self.batch_size = batch_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |         self.num_channels = num_channels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |         self.image_size = image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |         self.step = step | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |         self.border_mode = border_mode | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |         self.tied_biases = tied_biases | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |     def _allocate(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |         W = shared_floatx_nans((self.num_filters, self.num_channels) + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |                                self.filter_size, name='W') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |         add_role(W, FILTER) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |         self.parameters.append(W) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |         self.add_auxiliary_variable(W.norm(2), name='W_norm') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |         if getattr(self, 'use_bias', True): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |             if self.tied_biases: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |                 b = shared_floatx_nans((self.num_filters,), name='b') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |             else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |                 # this error is raised here instead of during initializiation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |                 # because ConvolutionalSequence may specify the image size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |                 if self.image_size == (None, None) and not self.tied_biases: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |                     raise ValueError('Cannot infer bias size without ' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |                                      'image_size specified. If you use ' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |                                      'variable image_size, you should use ' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |                                      'tied_biases=True.') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |                 b = shared_floatx_nans(self.get_dim('output'), name='b') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |             add_role(b, BIAS) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |             self.parameters.append(b) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |             self.add_auxiliary_variable(b.norm(2), name='b_norm') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |     @application(inputs=['input_'], outputs=['output']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |     def apply(self, input_): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |         """Perform the convolution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |         Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |         ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |         input_ : :class:`~tensor.TensorVariable` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |             A 4D tensor with the axes representing batch size, number of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |             channels, image height, and image width. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |         Returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |         ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |         output : :class:`~tensor.TensorVariable` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |             A 4D tensor of filtered images (feature maps) with dimensions | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |             representing batch size, number of filters, feature map height, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |             and feature map width. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |             The height and width of the feature map depend on the border | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |             mode. For 'valid' it is ``image_size - filter_size + 1`` while | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |             for 'full' it is ``image_size + filter_size - 1``. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |         if self.image_size == (None, None): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |             input_shape = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |             input_shape = (self.batch_size, self.num_channels) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |             input_shape += self.image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |         output = self.conv2d_impl( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |             input_, self.W, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |             input_shape=input_shape, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |             subsample=self.step, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |             border_mode=self.border_mode, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |             filter_shape=((self.num_filters, self.num_channels) + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |                           self.filter_size)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |         if getattr(self, 'use_bias', True): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |             if self.tied_biases: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |                 output += self.b.dimshuffle('x', 0, 'x', 'x') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |             else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |                 output += self.b.dimshuffle('x', 0, 1, 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |         return output | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |     def get_dim(self, name): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |         if name == 'input_': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |             return (self.num_channels,) + self.image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |         if name == 'output': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |             input_shape = (None, self.num_channels) + self.image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |             kernel_shape = ((self.num_filters, self.num_channels) + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |                             self.filter_size) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |             out_shape = self.get_output_shape(input_shape, kernel_shape, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |                                               self.border_mode, self.step) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |             assert len(out_shape) == 4 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |             return out_shape[1:] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |         return super(Convolutional, self).get_dim(name) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |     @property | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |     def num_output_channels(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |         return self.num_filters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  | class ConvolutionalTranspose(Convolutional): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |     """Performs the transpose of a 2D convolution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |     num_filters : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |         Number of filters at the *output* of the transposed convolution, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |         i.e. the number of channels in the corresponding convolution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |     num_channels : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |         Number of channels at the *input* of the transposed convolution, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |         i.e. the number of output filters in the corresponding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |         convolution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |     step : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         The step (or stride) of the corresponding *convolution*. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |         Defaults to (1, 1). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |     image_size : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |         Image size of the input to the *transposed* convolution, i.e. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |         the output of the corresponding convolution. Required for tied | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |         biases. Defaults to ``None``. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |     unused_edge : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |         Tuple of pixels added to the inferred height and width of the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |         output image, whose values would be ignored in the corresponding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |         forward convolution. Must be such that 0 <= ``unused_edge[i]`` <= | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |         ``step[i]``. Note that this parameter is **ignored** if | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |         ``original_image_size`` is specified in the constructor or manually | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |         set as an attribute. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |     original_image_size : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |         The height and width of the image that forms the output of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |         the transpose operation, which is the input of the original | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |         (non-transposed) convolution. By default, this is inferred | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |         from `image_size` to be the size that has each pixel of the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |         original image touched by at least one filter application | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |         in the original convolution. Degenerate cases with dropped | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |         border pixels (in the original convolution) are possible, and can | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |         be manually specified via this argument. See notes below. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |     See Also | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |     -------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |     :class:`Convolutional` : For the documentation of other parameters. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |     Notes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |     ----- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |     By default, `original_image_size` is inferred from `image_size` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |     as being the *minimum* size of image that could have produced this | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  |     output. Let ``hanging[i] = original_image_size[i] - image_size[i] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |     * step[i]``. Any value of ``hanging[i]`` greater than | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |     ``filter_size[i] - step[i]`` will result in border pixels that are | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  |     ignored by the original convolution. With this brick, any | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  |     ``original_image_size`` such that ``filter_size[i] - step[i] < | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |     hanging[i] < filter_size[i]`` for all ``i`` can be validly specified. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  |     However, no value will be output by the transposed convolution | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  |     itself for these extra hanging border pixels, and they will be | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  |     determined entirely by the bias. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |     @lazy(allocation=['filter_size', 'num_filters', 'num_channels']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  |     def __init__(self, filter_size, num_filters, num_channels, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  |                  original_image_size=None, unused_edge=(0, 0), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |                  **kwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  |         super(ConvolutionalTranspose, self).__init__( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  |             filter_size, num_filters, num_channels, **kwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  |         self.original_image_size = original_image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  |         self.unused_edge = unused_edge | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |     @property | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  |     def original_image_size(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  |         if self._original_image_size is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |             if all(s is None for s in self.image_size): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |                 raise ValueError("can't infer original_image_size, " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |                                  "no image_size set") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  |             if isinstance(self.border_mode, tuple): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |                 border = self.border_mode | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  |             elif self.border_mode == 'full': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  |                 border = tuple(k - 1 for k in self.filter_size) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |             elif self.border_mode == 'half': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  |                 border = tuple(k // 2 for k in self.filter_size) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  |             else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  |                 border = [0] * len(self.image_size) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |             tups = zip(self.image_size, self.step, self.filter_size, border, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |                        self.unused_edge) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |             return tuple(s * (i - 1) + k - 2 * p + u for i, s, k, p, u in tups) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |             return self._original_image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |     @original_image_size.setter | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |     def original_image_size(self, value): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  |         self._original_image_size = value | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 257 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 258 |  |  |     def conv2d_impl(self, input_, W, input_shape, subsample, border_mode, | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                        
                            
            
                                    
            
            
                | 259 |  |  |                     filter_shape): | 
            
                                                                        
                            
            
                                    
            
            
                | 260 |  |  |         # The AbstractConv2d_gradInputs op takes a kernel that was used for the | 
            
                                                                        
                            
            
                                    
            
            
                | 261 |  |  |         # **convolution**. We therefore have to invert num_channels and | 
            
                                                                        
                            
            
                                    
            
            
                | 262 |  |  |         # num_filters for W. | 
            
                                                                        
                            
            
                                    
            
            
                | 263 |  |  |         W = W.transpose(1, 0, 2, 3) | 
            
                                                                        
                            
            
                                    
            
            
                | 264 |  |  |         imshp = (None,) + self.get_dim('output') | 
            
                                                                        
                            
            
                                    
            
            
                | 265 |  |  |         kshp = (filter_shape[1], filter_shape[0]) + filter_shape[2:] | 
            
                                                                        
                            
            
                                    
            
            
                | 266 |  |  |         return AbstractConv2d_gradInputs( | 
            
                                                                        
                            
            
                                    
            
            
                | 267 |  |  |             imshp=imshp, kshp=kshp, border_mode=border_mode, | 
            
                                                                        
                            
            
                                    
            
            
                | 268 |  |  |             subsample=subsample)(W, input_, self.get_dim('output')[1:]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  |     def get_dim(self, name): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 271 |  |  |         if name == 'output': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 272 |  |  |             return (self.num_filters,) + self.original_image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 273 |  |  |         return super(ConvolutionalTranspose, self).get_dim(name) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 274 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 275 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 276 |  |  | class Pooling(Initializable, Feedforward): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 277 |  |  |     """Base Brick for pooling operations. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 278 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 279 |  |  |     This should generally not be instantiated directly; see | 
            
                                                                                                            
                            
            
                                    
            
            
                | 280 |  |  |     :class:`MaxPooling`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 281 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 282 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 283 |  |  |     @lazy(allocation=['mode', 'pooling_size']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 284 |  |  |     def __init__(self, mode, pooling_size, step, input_dim, ignore_border, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 285 |  |  |                  padding, **kwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 286 |  |  |         super(Pooling, self).__init__(**kwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 287 |  |  |         self.pooling_size = pooling_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 288 |  |  |         self.mode = mode | 
            
                                                                                                            
                            
            
                                    
            
            
                | 289 |  |  |         self.step = step | 
            
                                                                                                            
                            
            
                                    
            
            
                | 290 |  |  |         self.input_dim = input_dim if input_dim is not None else (None,) * 3 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 291 |  |  |         self.ignore_border = ignore_border | 
            
                                                                                                            
                            
            
                                    
            
            
                | 292 |  |  |         self.padding = padding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 293 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 294 |  |  |     @property | 
            
                                                                                                            
                            
            
                                    
            
            
                | 295 |  |  |     def image_size(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 296 |  |  |         return self.input_dim[-2:] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 297 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 298 |  |  |     @image_size.setter | 
            
                                                                                                            
                            
            
                                    
            
            
                | 299 |  |  |     def image_size(self, value): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 300 |  |  |         self.input_dim = self.input_dim[:-2] + value | 
            
                                                                                                            
                            
            
                                    
            
            
                | 301 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 302 |  |  |     @property | 
            
                                                                                                            
                            
            
                                    
            
            
                | 303 |  |  |     def num_channels(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 304 |  |  |         return self.input_dim[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 305 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 306 |  |  |     @num_channels.setter | 
            
                                                                                                            
                            
            
                                    
            
            
                | 307 |  |  |     def num_channels(self, value): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 308 |  |  |         self.input_dim = (value,) + self.input_dim[1:] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 309 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 310 |  |  |     @application(inputs=['input_'], outputs=['output']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 311 |  |  |     def apply(self, input_): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 312 |  |  |         """Apply the pooling (subsampling) transformation. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 313 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 314 |  |  |         Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 315 |  |  |         ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 316 |  |  |         input_ : :class:`~tensor.TensorVariable` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 317 |  |  |             An tensor with dimension greater or equal to 2. The last two | 
            
                                                                                                            
                            
            
                                    
            
            
                | 318 |  |  |             dimensions will be downsampled. For example, with images this | 
            
                                                                                                            
                            
            
                                    
            
            
                | 319 |  |  |             means that the last two dimensions should represent the height | 
            
                                                                                                            
                            
            
                                    
            
            
                | 320 |  |  |             and width of your image. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 321 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 322 |  |  |         Returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 323 |  |  |         ------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 324 |  |  |         output : :class:`~tensor.TensorVariable` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 325 |  |  |             A tensor with the same number of dimensions as `input_`, but | 
            
                                                                                                            
                            
            
                                    
            
            
                | 326 |  |  |             with the last two dimensions downsampled. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 327 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 328 |  |  |         """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 329 |  |  |         output = pool_2d(input_, self.pooling_size, st=self.step, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 330 |  |  |                          mode=self.mode, padding=self.padding, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 331 |  |  |                          ignore_border=self.ignore_border) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 332 |  |  |         return output | 
            
                                                                                                            
                            
            
                                    
            
            
                | 333 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 334 |  |  |     def get_dim(self, name): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 335 |  |  |         if name == 'input_': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 336 |  |  |             return self.input_dim | 
            
                                                                                                            
                            
            
                                    
            
            
                | 337 |  |  |         if name == 'output': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 338 |  |  |             return tuple(Pool.out_shape( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 339 |  |  |                 self.input_dim, self.pooling_size, st=self.step, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 340 |  |  |                 ignore_border=self.ignore_border, padding=self.padding)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 341 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 342 |  |  |     @property | 
            
                                                                                                            
                            
            
                                    
            
            
                | 343 |  |  |     def num_output_channels(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 344 |  |  |         return self.input_dim[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 345 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 346 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 347 |  |  | class MaxPooling(Pooling): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 348 |  |  |     """Max pooling layer. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 349 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 350 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 351 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 352 |  |  |     pooling_size : tuple | 
            
                                                                                                            
                            
            
                                    
            
            
                | 353 |  |  |         The height and width of the pooling region i.e. this is the factor | 
            
                                                                                                            
                            
            
                                    
            
            
                | 354 |  |  |         by which your input's last two dimensions will be downscaled. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 355 |  |  |     step : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 356 |  |  |         The vertical and horizontal shift (stride) between pooling regions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 357 |  |  |         By default this is equal to `pooling_size`. Setting this to a lower | 
            
                                                                                                            
                            
            
                                    
            
            
                | 358 |  |  |         number results in overlapping pooling regions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 359 |  |  |     input_dim : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 360 |  |  |         A tuple of integers representing the shape of the input. The last | 
            
                                                                                                            
                            
            
                                    
            
            
                | 361 |  |  |         two dimensions will be used to calculate the output dimension. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 362 |  |  |     padding : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 363 |  |  |         A tuple of integers representing the vertical and horizontal | 
            
                                                                                                            
                            
            
                                    
            
            
                | 364 |  |  |         zero-padding to be applied to each of the top and bottom | 
            
                                                                                                            
                            
            
                                    
            
            
                | 365 |  |  |         (vertical) and left and right (horizontal) edges. For example, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 366 |  |  |         an argument of (4, 3) will apply 4 pixels of padding to the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 367 |  |  |         top edge, 4 pixels of padding to the bottom edge, and 3 pixels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 368 |  |  |         each for the left and right edge. By default, no padding is | 
            
                                                                                                            
                            
            
                                    
            
            
                | 369 |  |  |         performed. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 370 |  |  |     ignore_border : bool, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 371 |  |  |         Whether or not to do partial downsampling based on borders where | 
            
                                                                                                            
                            
            
                                    
            
            
                | 372 |  |  |         the extent of the pooling region reaches beyond the edge of the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 373 |  |  |         image. If `True`, a (5, 5) image with (2, 2) pooling regions | 
            
                                                                                                            
                            
            
                                    
            
            
                | 374 |  |  |         and (2, 2) step will be downsampled to shape (2, 2), otherwise | 
            
                                                                                                            
                            
            
                                    
            
            
                | 375 |  |  |         it will be downsampled to (3, 3). `True` by default. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 376 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 377 |  |  |     Notes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 378 |  |  |     ----- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 379 |  |  |     .. warning:: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 380 |  |  |         As of this writing, setting `ignore_border` to `False` with a step | 
            
                                                                                                            
                            
            
                                    
            
            
                | 381 |  |  |         not equal to the pooling size will force Theano to perform pooling | 
            
                                                                                                            
                            
            
                                    
            
            
                | 382 |  |  |         computations on CPU rather than GPU, even if you have specified | 
            
                                                                                                            
                            
            
                                    
            
            
                | 383 |  |  |         a GPU as your computation device. Additionally, Theano will only | 
            
                                                                                                            
                            
            
                                    
            
            
                | 384 |  |  |         use [cuDNN]_ (if available) for pooling computations with | 
            
                                                                                                            
                            
            
                                    
            
            
                | 385 |  |  |         `ignure_border` set to `True`. You can ensure that the entire | 
            
                                                                                                            
                            
            
                                    
            
            
                | 386 |  |  |         input is captured by at least one pool by using the `padding` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 387 |  |  |         argument to add zero padding prior to pooling being performed. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 388 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 389 |  |  |     .. [cuDNN]: `NVIDIA cuDNN <https://developer.nvidia.com/cudnn>`_. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 390 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 391 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 392 |  |  |     @lazy(allocation=['pooling_size']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 393 |  |  |     def __init__(self, pooling_size, step=None, input_dim=None, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 394 |  |  |                  ignore_border=True, padding=(0, 0), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 395 |  |  |                  **kwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 396 |  |  |         super(MaxPooling, self).__init__('max', pooling_size, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 397 |  |  |                                          step=step, input_dim=input_dim, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 398 |  |  |                                          ignore_border=ignore_border, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 399 |  |  |                                          padding=padding, **kwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 400 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 401 |  |  |     def __setstate__(self, state): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 402 |  |  |         self.__dict__.update(state) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 403 |  |  |         # Fix objects created before pull request #899. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 404 |  |  |         self.mode = getattr(self, 'mode', 'max') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 405 |  |  |         self.padding = getattr(self, 'padding', (0, 0)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 406 |  |  |         self.ignore_border = getattr(self, 'ignore_border', False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 407 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 408 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 409 |  |  | class AveragePooling(Pooling): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 410 |  |  |     """Average pooling layer. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 411 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 412 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 413 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 414 |  |  |     include_padding : bool, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 415 |  |  |         When calculating an average, include zeros that are the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 416 |  |  |         result of zero padding added by the `padding` argument. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 417 |  |  |         A value of `True` is only accepted if `ignore_border` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 418 |  |  |         is also `True`. `False` by default. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 419 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 420 |  |  |     Notes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 421 |  |  |     ----- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 422 |  |  |     For documentation on the remainder of the arguments to this | 
            
                                                                                                            
                            
            
                                    
            
            
                | 423 |  |  |     class, see :class:`MaxPooling`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 424 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 425 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 426 |  |  |     @lazy(allocation=['pooling_size']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 427 |  |  |     def __init__(self, pooling_size, step=None, input_dim=None, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 428 |  |  |                  ignore_border=True, padding=(0, 0), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 429 |  |  |                  include_padding=False, **kwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 430 |  |  |         mode = 'average_inc_pad' if include_padding else 'average_exc_pad' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 431 |  |  |         super(AveragePooling, self).__init__(mode, pooling_size, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 432 |  |  |                                              step=step, input_dim=input_dim, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 433 |  |  |                                              ignore_border=ignore_border, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 434 |  |  |                                              padding=padding, **kwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 435 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 436 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 437 |  |  | class ConvolutionalSequence(Sequence, Initializable, Feedforward): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 438 |  |  |     """A sequence of convolutional (or pooling) operations. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 439 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 440 |  |  |     Parameters | 
            
                                                                                                            
                            
            
                                    
            
            
                | 441 |  |  |     ---------- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 442 |  |  |     layers : list | 
            
                                                                                                            
                            
            
                                    
            
            
                | 443 |  |  |         List of convolutional bricks (i.e. :class:`Convolutional`, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 444 |  |  |         :class:`ConvolutionalActivation`, or :class:`Pooling` bricks). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 445 |  |  |         :class:`Activation` bricks that operate elementwise can also | 
            
                                                                                                            
                            
            
                                    
            
            
                | 446 |  |  |         be included. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 447 |  |  |     num_channels : int | 
            
                                                                                                            
                            
            
                                    
            
            
                | 448 |  |  |         Number of input channels in the image. For the first layer this is | 
            
                                                                                                            
                            
            
                                    
            
            
                | 449 |  |  |         normally 1 for grayscale images and 3 for color (RGB) images. For | 
            
                                                                                                            
                            
            
                                    
            
            
                | 450 |  |  |         subsequent layers this is equal to the number of filters output by | 
            
                                                                                                            
                            
            
                                    
            
            
                | 451 |  |  |         the previous convolutional layer. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 452 |  |  |     batch_size : int, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 453 |  |  |         Number of images in batch. If given, will be passed to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 454 |  |  |         theano's convolution operator resulting in possibly faster | 
            
                                                                                                            
                            
            
                                    
            
            
                | 455 |  |  |         execution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 456 |  |  |     image_size : tuple, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 457 |  |  |         Width and height of the input (image/featuremap). If given, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 458 |  |  |         will be passed to theano's convolution operator resulting in | 
            
                                                                                                            
                            
            
                                    
            
            
                | 459 |  |  |         possibly faster execution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 460 |  |  |     border_mode : 'valid', 'full' or None, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 461 |  |  |         The border mode to use, see :func:`scipy.signal.convolve2d` for | 
            
                                                                                                            
                            
            
                                    
            
            
                | 462 |  |  |         details. Unlike with :class:`Convolutional`, this defaults to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 463 |  |  |         None, in which case no default value is pushed down to child | 
            
                                                                                                            
                            
            
                                    
            
            
                | 464 |  |  |         bricks at allocation time. Child bricks will in this case | 
            
                                                                                                            
                            
            
                                    
            
            
                | 465 |  |  |         need to rely on either a default border mode (usually valid) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 466 |  |  |         or one provided at construction and/or after construction | 
            
                                                                                                            
                            
            
                                    
            
            
                | 467 |  |  |         (but before allocation). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 468 |  |  |     tied_biases : bool, optional | 
            
                                                                                                            
                            
            
                                    
            
            
                | 469 |  |  |         Same meaning as in :class:`Convolutional`. Defaults to ``None``, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 470 |  |  |         in which case no value is pushed to child :class:`Convolutional` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 471 |  |  |         bricks. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 472 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 473 |  |  |     Notes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 474 |  |  |     ----- | 
            
                                                                                                            
                            
            
                                    
            
            
                | 475 |  |  |     The passed convolutional operators should be 'lazy' constructed, that | 
            
                                                                                                            
                            
            
                                    
            
            
                | 476 |  |  |     is, without specifying the batch_size, num_channels and image_size. The | 
            
                                                                                                            
                            
            
                                    
            
            
                | 477 |  |  |     main feature of :class:`ConvolutionalSequence` is that it will set the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 478 |  |  |     input dimensions of a layer to the output dimensions of the previous | 
            
                                                                                                            
                            
            
                                    
            
            
                | 479 |  |  |     layer by the :meth:`~.Brick.push_allocation_config` method. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 480 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 481 |  |  |     The push behaviour of `tied_biases` mirrors that of `use_bias` or any | 
            
                                                                                                            
                            
            
                                    
            
            
                | 482 |  |  |     initialization configuration: only an explicitly specified value is | 
            
                                                                                                            
                            
            
                                    
            
            
                | 483 |  |  |     pushed down the hierarchy. `border_mode` also has this behaviour. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 484 |  |  |     The reason the `border_mode` parameter behaves the way it does is that | 
            
                                                                                                            
                            
            
                                    
            
            
                | 485 |  |  |     pushing a single default `border_mode` makes it very difficult to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 486 |  |  |     have child bricks with different border modes. Normally, such things | 
            
                                                                                                            
                            
            
                                    
            
            
                | 487 |  |  |     would be overridden after `push_allocation_config()`, but this is | 
            
                                                                                                            
                            
            
                                    
            
            
                | 488 |  |  |     a particular hassle as the border mode affects the allocation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 489 |  |  |     parameters of every subsequent child brick in the sequence. Thus, only | 
            
                                                                                                            
                            
            
                                    
            
            
                | 490 |  |  |     an explicitly specified border mode will be pushed down the hierarchy. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 491 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 492 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 493 |  |  |     @lazy(allocation=['num_channels']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 494 |  |  |     def __init__(self, layers, num_channels, batch_size=None, image_size=None, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 495 |  |  |                  border_mode=None, tied_biases=None, **kwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 496 |  |  |         self.layers = layers | 
            
                                                                                                            
                            
            
                                    
            
            
                | 497 |  |  |         self.image_size = image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 498 |  |  |         self.num_channels = num_channels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 499 |  |  |         self.batch_size = batch_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 500 |  |  |         self.border_mode = border_mode | 
            
                                                                                                            
                            
            
                                    
            
            
                | 501 |  |  |         self.tied_biases = tied_biases | 
            
                                                                                                            
                            
            
                                    
            
            
                | 502 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 503 |  |  |         application_methods = [brick.apply for brick in layers] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 504 |  |  |         super(ConvolutionalSequence, self).__init__( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 505 |  |  |             application_methods=application_methods, **kwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 506 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 507 |  |  |     def get_dim(self, name): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 508 |  |  |         if name == 'input_': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 509 |  |  |             return ((self.num_channels,) + self.image_size) | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 510 |  |  |         if name == 'output': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 511 |  |  |             last = len(self.layers) - 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 512 |  |  |             while last >= 0: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 513 |  |  |                 try: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 514 |  |  |                     return self.layers[last].get_dim(name) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 515 |  |  |                 except ValueError: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 516 |  |  |                     last -= 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 517 |  |  |             # The output shape of an empty ConvolutionalSequence or one | 
            
                                                                                                            
                            
            
                                    
            
            
                | 518 |  |  |             # consisting only of Activations is the input shape. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 519 |  |  |             return self.get_dim('input_') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 520 |  |  |         return super(ConvolutionalSequence, self).get_dim(name) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 521 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 522 |  |  |     def _push_allocation_config(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 523 |  |  |         num_channels = self.num_channels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 524 |  |  |         image_size = self.image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 525 |  |  |         for layer in self.layers: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 526 |  |  |             if isinstance(layer, Activation): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 527 |  |  |                 # Activations operate elementwise; nothing to set. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 528 |  |  |                 layer.push_allocation_config() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 529 |  |  |                 continue | 
            
                                                                                                            
                            
            
                                    
            
            
                | 530 |  |  |             if self.border_mode is not None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 531 |  |  |                 layer.border_mode = self.border_mode | 
            
                                                                                                            
                            
            
                                    
            
            
                | 532 |  |  |             if self.tied_biases is not None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 533 |  |  |                 layer.tied_biases = self.tied_biases | 
            
                                                                                                            
                            
            
                                    
            
            
                | 534 |  |  |             layer.image_size = image_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 535 |  |  |             layer.num_channels = num_channels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 536 |  |  |             layer.batch_size = self.batch_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 537 |  |  |             if getattr(self, 'use_bias', None) is not None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 538 |  |  |                 layer.use_bias = self.use_bias | 
            
                                                                                                            
                            
            
                                    
            
            
                | 539 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 540 |  |  |             # Push input dimensions to children | 
            
                                                                                                            
                            
            
                                    
            
            
                | 541 |  |  |             layer.push_allocation_config() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 542 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 543 |  |  |             # Retrieve output dimensions | 
            
                                                                                                            
                            
            
                                    
            
            
                | 544 |  |  |             # and set it for next layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 545 |  |  |             if layer.image_size is not None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 546 |  |  |                 output_shape = layer.get_dim('output') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 547 |  |  |                 image_size = output_shape[1:] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 548 |  |  |             num_channels = layer.num_output_channels | 
            
                                                                                                            
                            
            
                                    
            
            
                | 549 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 550 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 551 |  |  | class Flattener(Brick): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 552 |  |  |     """Flattens the input. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 553 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 554 |  |  |     It may be used to pass multidimensional objects like images or feature | 
            
                                                                                                            
                            
            
                                    
            
            
                | 555 |  |  |     maps of convolutional bricks into bricks which allow only two | 
            
                                                                                                            
                            
            
                                    
            
            
                | 556 |  |  |     dimensional input (batch, features) like MLP. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 557 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 558 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 559 |  |  |     @application(inputs=['input_'], outputs=['output']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 560 |  |  |     def apply(self, input_): | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 561 |  |  |         return input_.flatten(ndim=2) | 
            
                                                        
            
                                    
            
            
                | 562 |  |  |  |