|
1
|
|
|
"""Some of the simplest individual bricks.""" |
|
2
|
|
|
import logging |
|
3
|
|
|
|
|
4
|
|
|
from theano import tensor |
|
5
|
|
|
|
|
6
|
|
|
from blocks.bricks.base import application, Brick, lazy |
|
7
|
|
|
from blocks.bricks.interfaces import Activation, Feedforward, Initializable |
|
8
|
|
|
from blocks.bricks.interfaces import LinearLike, Random # noqa |
|
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
from blocks.bricks.wrappers import WithExtraDims |
|
11
|
|
|
from blocks.roles import add_role, WEIGHT, BIAS |
|
12
|
|
|
from blocks.utils import shared_floatx_nans |
|
13
|
|
|
|
|
14
|
|
|
logger = logging.getLogger(__name__) |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class Linear(LinearLike, Feedforward): |
|
18
|
|
|
r"""A linear transformation with optional bias. |
|
19
|
|
|
|
|
20
|
|
|
Brick which applies a linear (affine) transformation by multiplying |
|
21
|
|
|
the input with a weight matrix. By default, a bias term is added |
|
22
|
|
|
(see :class:`Initializable` for information on disabling this). |
|
23
|
|
|
|
|
24
|
|
|
Parameters |
|
25
|
|
|
---------- |
|
26
|
|
|
input_dim : int |
|
27
|
|
|
The dimension of the input. Required by :meth:`~.Brick.allocate`. |
|
28
|
|
|
output_dim : int |
|
29
|
|
|
The dimension of the output. Required by :meth:`~.Brick.allocate`. |
|
30
|
|
|
|
|
31
|
|
|
Notes |
|
32
|
|
|
----- |
|
33
|
|
|
See :class:`Initializable` for initialization parameters. |
|
34
|
|
|
|
|
35
|
|
|
A linear transformation with bias is a matrix multiplication followed |
|
36
|
|
|
by a vector summation. |
|
37
|
|
|
|
|
38
|
|
|
.. math:: f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b} |
|
39
|
|
|
|
|
40
|
|
|
""" |
|
41
|
|
|
@lazy(allocation=['input_dim', 'output_dim']) |
|
42
|
|
|
def __init__(self, input_dim, output_dim, **kwargs): |
|
43
|
|
|
super(Linear, self).__init__(**kwargs) |
|
44
|
|
|
self.input_dim = input_dim |
|
45
|
|
|
self.output_dim = output_dim |
|
46
|
|
|
|
|
47
|
|
|
def _allocate(self): |
|
48
|
|
|
W = shared_floatx_nans((self.input_dim, self.output_dim), name='W') |
|
49
|
|
|
add_role(W, WEIGHT) |
|
50
|
|
|
self.parameters.append(W) |
|
51
|
|
|
self.add_auxiliary_variable(W.norm(2), name='W_norm') |
|
52
|
|
|
if getattr(self, 'use_bias', True): |
|
53
|
|
|
b = shared_floatx_nans((self.output_dim,), name='b') |
|
54
|
|
|
add_role(b, BIAS) |
|
55
|
|
|
self.parameters.append(b) |
|
56
|
|
|
self.add_auxiliary_variable(b.norm(2), name='b_norm') |
|
57
|
|
|
|
|
58
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
59
|
|
|
def apply(self, input_): |
|
60
|
|
|
"""Apply the linear transformation. |
|
61
|
|
|
|
|
62
|
|
|
Parameters |
|
63
|
|
|
---------- |
|
64
|
|
|
input_ : :class:`~tensor.TensorVariable` |
|
65
|
|
|
The input on which to apply the transformation |
|
66
|
|
|
|
|
67
|
|
|
Returns |
|
68
|
|
|
------- |
|
69
|
|
|
output : :class:`~tensor.TensorVariable` |
|
70
|
|
|
The transformed input plus optional bias |
|
71
|
|
|
|
|
72
|
|
|
""" |
|
73
|
|
|
output = tensor.dot(input_, self.W) |
|
74
|
|
|
if getattr(self, 'use_bias', True): |
|
75
|
|
|
output += self.b |
|
76
|
|
|
return output |
|
77
|
|
|
|
|
78
|
|
|
def get_dim(self, name): |
|
79
|
|
|
if name == 'input_': |
|
80
|
|
|
return self.input_dim |
|
81
|
|
|
if name == 'output': |
|
82
|
|
|
return self.output_dim |
|
83
|
|
|
super(Linear, self).get_dim(name) |
|
84
|
|
|
|
|
85
|
|
|
|
|
86
|
|
|
class Bias(Feedforward, Initializable): |
|
87
|
|
|
"""Add a bias (i.e. sum with a vector).""" |
|
88
|
|
|
@lazy(allocation=['dim']) |
|
89
|
|
|
def __init__(self, dim, **kwargs): |
|
90
|
|
|
super(Bias, self).__init__(**kwargs) |
|
91
|
|
|
self.dim = dim |
|
92
|
|
|
|
|
93
|
|
|
def _allocate(self): |
|
94
|
|
|
b = shared_floatx_nans((self.output_dim,), name='b') |
|
95
|
|
|
add_role(b, BIAS) |
|
96
|
|
|
self.parameters.append(b) |
|
97
|
|
|
|
|
98
|
|
|
def _initialize(self): |
|
99
|
|
|
b, = self.parameters |
|
|
|
|
|
|
100
|
|
|
self.biases_init.initialize(b, self.rng) |
|
101
|
|
|
|
|
102
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
103
|
|
|
def apply(self, input_): |
|
104
|
|
|
"""Apply the linear transformation. |
|
105
|
|
|
|
|
106
|
|
|
Parameters |
|
107
|
|
|
---------- |
|
108
|
|
|
input_ : :class:`~tensor.TensorVariable` |
|
109
|
|
|
The input on which to apply the transformation |
|
110
|
|
|
|
|
111
|
|
|
Returns |
|
112
|
|
|
------- |
|
113
|
|
|
output : :class:`~tensor.TensorVariable` |
|
114
|
|
|
The transformed input plus optional bias |
|
115
|
|
|
|
|
116
|
|
|
""" |
|
117
|
|
|
b, = self.parameters |
|
|
|
|
|
|
118
|
|
|
return input_ + b |
|
119
|
|
|
|
|
120
|
|
|
def get_dim(self, name): |
|
121
|
|
|
if name in ['input_', 'output']: |
|
122
|
|
|
return self.dim |
|
123
|
|
|
super(Bias, self).get_dim(name) |
|
124
|
|
|
|
|
125
|
|
|
def _get_dim(self): |
|
126
|
|
|
return self.dim |
|
127
|
|
|
|
|
128
|
|
|
def _set_dim(self, value): |
|
129
|
|
|
self.dim = value |
|
130
|
|
|
|
|
131
|
|
|
input_dim = output_dim = property(_get_dim, _set_dim) |
|
132
|
|
|
|
|
133
|
|
|
|
|
134
|
|
|
class Maxout(Brick): |
|
135
|
|
|
"""Maxout pooling transformation. |
|
136
|
|
|
|
|
137
|
|
|
A brick that does max pooling over groups of input units. If you use |
|
138
|
|
|
this code in a research project, please cite [GWFM13]_. |
|
139
|
|
|
|
|
140
|
|
|
.. [GWFM13] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron |
|
141
|
|
|
Courville, and Yoshua Bengio, *Maxout networks*, ICML (2013), pp. |
|
142
|
|
|
1319-1327. |
|
143
|
|
|
|
|
144
|
|
|
Parameters |
|
145
|
|
|
---------- |
|
146
|
|
|
num_pieces : int |
|
147
|
|
|
The size of the groups the maximum is taken over. |
|
148
|
|
|
|
|
149
|
|
|
Notes |
|
150
|
|
|
----- |
|
151
|
|
|
Maxout applies a set of linear transformations to a vector and selects |
|
152
|
|
|
for each output dimension the result with the highest value. |
|
153
|
|
|
|
|
154
|
|
|
""" |
|
155
|
|
|
@lazy(allocation=['num_pieces']) |
|
156
|
|
|
def __init__(self, num_pieces, **kwargs): |
|
157
|
|
|
super(Maxout, self).__init__(**kwargs) |
|
158
|
|
|
self.num_pieces = num_pieces |
|
159
|
|
|
|
|
160
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
161
|
|
|
def apply(self, input_): |
|
162
|
|
|
"""Apply the maxout transformation. |
|
163
|
|
|
|
|
164
|
|
|
Parameters |
|
165
|
|
|
---------- |
|
166
|
|
|
input_ : :class:`~tensor.TensorVariable` |
|
167
|
|
|
The input on which to apply the transformation |
|
168
|
|
|
|
|
169
|
|
|
Returns |
|
170
|
|
|
------- |
|
171
|
|
|
output : :class:`~tensor.TensorVariable` |
|
172
|
|
|
The transformed input |
|
173
|
|
|
|
|
174
|
|
|
""" |
|
175
|
|
|
last_dim = input_.shape[-1] |
|
176
|
|
|
output_dim = last_dim // self.num_pieces |
|
177
|
|
|
new_shape = ([input_.shape[i] for i in range(input_.ndim - 1)] + |
|
178
|
|
|
[output_dim, self.num_pieces]) |
|
179
|
|
|
output = tensor.max(input_.reshape(new_shape, ndim=input_.ndim + 1), |
|
180
|
|
|
axis=input_.ndim) |
|
181
|
|
|
return output |
|
182
|
|
|
|
|
183
|
|
|
|
|
184
|
|
|
class LinearMaxout(Initializable, Feedforward): |
|
185
|
|
|
"""Maxout pooling following a linear transformation. |
|
186
|
|
|
|
|
187
|
|
|
This code combines the :class:`Linear` brick with a :class:`Maxout` |
|
188
|
|
|
brick. |
|
189
|
|
|
|
|
190
|
|
|
Parameters |
|
191
|
|
|
---------- |
|
192
|
|
|
input_dim : int |
|
193
|
|
|
The dimension of the input. Required by :meth:`~.Brick.allocate`. |
|
194
|
|
|
output_dim : int |
|
195
|
|
|
The dimension of the output. Required by :meth:`~.Brick.allocate`. |
|
196
|
|
|
num_pieces : int |
|
197
|
|
|
The number of linear functions. Required by |
|
198
|
|
|
:meth:`~.Brick.allocate`. |
|
199
|
|
|
|
|
200
|
|
|
Notes |
|
201
|
|
|
----- |
|
202
|
|
|
See :class:`Initializable` for initialization parameters. |
|
203
|
|
|
|
|
204
|
|
|
""" |
|
205
|
|
|
@lazy(allocation=['input_dim', 'output_dim', 'num_pieces']) |
|
206
|
|
|
def __init__(self, input_dim, output_dim, num_pieces, **kwargs): |
|
207
|
|
|
self.linear = Linear() |
|
208
|
|
|
self.maxout = Maxout() |
|
209
|
|
|
children = [self.linear, self.maxout] |
|
210
|
|
|
kwargs.setdefault('children', []).extend(children) |
|
211
|
|
|
super(LinearMaxout, self).__init__(**kwargs) |
|
212
|
|
|
|
|
213
|
|
|
self.input_dim = input_dim |
|
214
|
|
|
self.output_dim = output_dim |
|
215
|
|
|
self.num_pieces = num_pieces |
|
216
|
|
|
|
|
217
|
|
|
@property |
|
218
|
|
|
def input_dim(self): |
|
219
|
|
|
return self.linear.input_dim |
|
220
|
|
|
|
|
221
|
|
|
@input_dim.setter |
|
222
|
|
|
def input_dim(self, value): |
|
223
|
|
|
self.linear.input_dim = value |
|
224
|
|
|
|
|
225
|
|
|
def _push_allocation_config(self): |
|
226
|
|
|
self.linear.output_dim = self.output_dim * self.num_pieces |
|
227
|
|
|
self.maxout.num_pieces = self.num_pieces |
|
228
|
|
|
|
|
229
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
230
|
|
|
def apply(self, input_): |
|
231
|
|
|
"""Apply the linear transformation followed by maxout. |
|
232
|
|
|
|
|
233
|
|
|
Parameters |
|
234
|
|
|
---------- |
|
235
|
|
|
input_ : :class:`~tensor.TensorVariable` |
|
236
|
|
|
The input on which to apply the transformations |
|
237
|
|
|
|
|
238
|
|
|
Returns |
|
239
|
|
|
------- |
|
240
|
|
|
output : :class:`~tensor.TensorVariable` |
|
241
|
|
|
The transformed input |
|
242
|
|
|
|
|
243
|
|
|
""" |
|
244
|
|
|
pre_activation = self.linear.apply(input_) |
|
245
|
|
|
output = self.maxout.apply(pre_activation) |
|
246
|
|
|
return output |
|
247
|
|
|
|
|
248
|
|
|
|
|
249
|
|
|
class Identity(Activation): |
|
250
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
251
|
|
|
def apply(self, input_): |
|
252
|
|
|
return input_ |
|
253
|
|
|
|
|
254
|
|
|
|
|
255
|
|
|
class Tanh(Activation): |
|
256
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
257
|
|
|
def apply(self, input_): |
|
258
|
|
|
return tensor.tanh(input_) |
|
259
|
|
|
|
|
260
|
|
|
|
|
261
|
|
|
class Logistic(Activation): |
|
262
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
263
|
|
|
def apply(self, input_): |
|
264
|
|
|
return tensor.nnet.sigmoid(input_) |
|
265
|
|
|
|
|
266
|
|
|
|
|
267
|
|
|
class Softplus(Activation): |
|
268
|
|
|
r""" Softplus brick. |
|
269
|
|
|
|
|
270
|
|
|
The softplus is defined as :math:`\zeta(x) = \log(1+e^x)`. |
|
271
|
|
|
|
|
272
|
|
|
.. Dugas, C., Bengio, Y., Belisle, F., Nadeau, C., and Garcia, |
|
273
|
|
|
R. (2001). Incorporating second-order functional knowledge |
|
274
|
|
|
for better option pricing. In NIPS 13 . MIT Press. |
|
275
|
|
|
|
|
276
|
|
|
""" |
|
277
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
278
|
|
|
def apply(self, input_): |
|
279
|
|
|
return tensor.nnet.softplus(input_) |
|
280
|
|
|
|
|
281
|
|
|
|
|
282
|
|
|
class Rectifier(Activation): |
|
283
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
284
|
|
|
def apply(self, input_): |
|
285
|
|
|
return tensor.nnet.relu(input_) |
|
286
|
|
|
|
|
287
|
|
|
|
|
288
|
|
|
class LeakyRectifier(Activation): |
|
289
|
|
|
r"""Leaky ReLU |
|
290
|
|
|
|
|
291
|
|
|
Like Rectifier, but inputs are scaled by small constant for negative |
|
292
|
|
|
inputs. |
|
293
|
|
|
|
|
294
|
|
|
.. math:: f(x) = \text{max}(x, ax) |
|
295
|
|
|
|
|
296
|
|
|
Parameters |
|
297
|
|
|
---------- |
|
298
|
|
|
leak : float, optional |
|
299
|
|
|
The scalar to multiply negative values by. Named 'a' above. |
|
300
|
|
|
|
|
301
|
|
|
.. Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. Rectifier |
|
302
|
|
|
nonlinearities improve neural network acoustic models. Proc. |
|
303
|
|
|
ICML. Vol. 30. 2013. |
|
304
|
|
|
|
|
305
|
|
|
""" |
|
306
|
|
|
def __init__(self, leak=0.01, **kwargs): |
|
307
|
|
|
super(LeakyRectifier, self).__init__(**kwargs) |
|
308
|
|
|
self._leak = leak |
|
309
|
|
|
|
|
310
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
311
|
|
|
def apply(self, input_): |
|
312
|
|
|
return tensor.nnet.relu(input_, alpha=self._leak) |
|
313
|
|
|
|
|
314
|
|
|
|
|
315
|
|
|
class Softmax(Brick): |
|
316
|
|
|
"""A softmax brick. |
|
317
|
|
|
|
|
318
|
|
|
Works with 2-dimensional inputs only. If you need more, |
|
319
|
|
|
see :class:`NDimensionalSoftmax`. |
|
320
|
|
|
|
|
321
|
|
|
""" |
|
322
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
323
|
|
|
def apply(self, input_): |
|
324
|
|
|
"""Standard softmax. |
|
325
|
|
|
|
|
326
|
|
|
Parameters |
|
327
|
|
|
---------- |
|
328
|
|
|
input_ : :class:`~theano.Variable` |
|
329
|
|
|
A matrix, each row contains unnormalized log-probabilities of a |
|
330
|
|
|
distribution. |
|
331
|
|
|
|
|
332
|
|
|
Returns |
|
333
|
|
|
------- |
|
334
|
|
|
output_ : :class:`~theano.Variable` |
|
335
|
|
|
A matrix with probabilities in each row for each distribution |
|
336
|
|
|
from `input_`. |
|
337
|
|
|
|
|
338
|
|
|
""" |
|
339
|
|
|
return tensor.nnet.softmax(input_) |
|
340
|
|
|
|
|
341
|
|
|
@application(inputs=['input_'], outputs=['output']) |
|
342
|
|
|
def log_probabilities(self, input_): |
|
343
|
|
|
"""Normalize log-probabilities. |
|
344
|
|
|
|
|
345
|
|
|
Converts unnormalized log-probabilities (exponents of which do not |
|
346
|
|
|
sum to one) into actual log-probabilities (exponents of which sum |
|
347
|
|
|
to one). |
|
348
|
|
|
|
|
349
|
|
|
Parameters |
|
350
|
|
|
---------- |
|
351
|
|
|
input_ : :class:`~theano.Variable` |
|
352
|
|
|
A matrix, each row contains unnormalized log-probabilities of a |
|
353
|
|
|
distribution. |
|
354
|
|
|
|
|
355
|
|
|
Returns |
|
356
|
|
|
------- |
|
357
|
|
|
output : :class:`~theano.Variable` |
|
358
|
|
|
A matrix with normalized log-probabilities in each row for each |
|
359
|
|
|
distribution from `input_`. |
|
360
|
|
|
|
|
361
|
|
|
""" |
|
362
|
|
|
shifted = input_ - input_.max(axis=1, keepdims=True) |
|
363
|
|
|
return shifted - tensor.log( |
|
364
|
|
|
tensor.exp(shifted).sum(axis=1, keepdims=True)) |
|
365
|
|
|
|
|
366
|
|
|
@application(inputs=['y', 'x'], outputs=['output']) |
|
367
|
|
|
def categorical_cross_entropy(self, application_call, y, x): |
|
368
|
|
|
"""Computationally stable cross-entropy for pre-softmax values. |
|
369
|
|
|
|
|
370
|
|
|
Parameters |
|
371
|
|
|
---------- |
|
372
|
|
|
y : :class:`~tensor.TensorVariable` |
|
373
|
|
|
In the case of a matrix argument, each row represents a |
|
374
|
|
|
probabilility distribution. In the vector case, each element |
|
375
|
|
|
represents a distribution by specifying the position of 1 in a |
|
376
|
|
|
1-hot vector. |
|
377
|
|
|
x : :class:`~tensor.TensorVariable` |
|
378
|
|
|
A matrix, each row contains unnormalized probabilities of a |
|
379
|
|
|
distribution. |
|
380
|
|
|
|
|
381
|
|
|
Returns |
|
382
|
|
|
------- |
|
383
|
|
|
cost : :class:`~tensor.TensorVariable` |
|
384
|
|
|
A vector of cross-entropies between respective distributions |
|
385
|
|
|
from y and x. |
|
386
|
|
|
|
|
387
|
|
|
""" |
|
388
|
|
|
x = self.log_probabilities(x) |
|
389
|
|
|
application_call.add_auxiliary_variable( |
|
390
|
|
|
x.copy(name='log_probabilities')) |
|
391
|
|
|
if y.ndim == x.ndim - 1: |
|
392
|
|
|
indices = tensor.arange(y.shape[0]) * x.shape[1] + y |
|
393
|
|
|
cost = -x.flatten()[indices] |
|
394
|
|
|
elif y.ndim == x.ndim: |
|
395
|
|
|
cost = -(x * y).sum(axis=1) |
|
396
|
|
|
else: |
|
397
|
|
|
raise TypeError('rank mismatch between x and y') |
|
398
|
|
|
return cost |
|
399
|
|
|
|
|
400
|
|
|
|
|
401
|
|
|
class NDimensionalSoftmax(Softmax): |
|
402
|
|
|
decorators = [WithExtraDims()] |
|
403
|
|
|
|