1
|
|
|
"""Extensions for monitoring the training process.""" |
2
|
|
|
import logging |
3
|
|
|
|
4
|
|
|
import theano |
5
|
|
|
|
6
|
|
|
from blocks.extensions import SimpleExtension, TrainingExtension |
7
|
|
|
from blocks.algorithms import UpdatesAlgorithm |
8
|
|
|
from blocks.monitoring.aggregation import MonitoredQuantity, take_last |
9
|
|
|
from blocks.monitoring.evaluators import ( |
10
|
|
|
AggregationBuffer, MonitoredQuantityBuffer, DatasetEvaluator) |
11
|
|
|
|
12
|
|
|
SEPARATOR = '_' |
13
|
|
|
logger = logging.getLogger(__name__) |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class MonitoringExtension(TrainingExtension): |
17
|
|
|
"""A mixin with logic shared by monitoring extensions. |
18
|
|
|
|
19
|
|
|
Parameters |
20
|
|
|
---------- |
21
|
|
|
prefix : str, optional |
22
|
|
|
The prefix for the log records done by the extension. It is |
23
|
|
|
prepended to the variable names with an underscore as a separator. |
24
|
|
|
If not given, no prefix is added to the names of the observed |
25
|
|
|
variables. |
26
|
|
|
suffix : str, optional |
27
|
|
|
The suffix for the log records done by the extension. It is |
28
|
|
|
appended to the end of variable names with an underscore as a |
29
|
|
|
separator. If not given, no suffix is added the names of the |
30
|
|
|
observed variables. |
31
|
|
|
|
32
|
|
|
""" |
33
|
|
|
SEPARATOR = SEPARATOR |
34
|
|
|
|
35
|
|
|
def __init__(self, prefix=None, suffix=None, **kwargs): |
36
|
|
|
super(MonitoringExtension, self).__init__(**kwargs) |
37
|
|
|
self.prefix = prefix |
38
|
|
|
self.suffix = suffix |
39
|
|
|
|
40
|
|
|
def _record_name(self, name): |
41
|
|
|
"""The record name for a variable name.""" |
42
|
|
|
if not isinstance(name, str): |
43
|
|
|
raise ValueError("record name must be a string") |
44
|
|
|
|
45
|
|
|
return self.SEPARATOR.join( |
46
|
|
|
[morpheme for morpheme in [self.prefix, name, self.suffix] |
47
|
|
|
if morpheme is not None]) |
48
|
|
|
|
49
|
|
|
def record_name(self, variable): |
50
|
|
|
"""The record name for a variable.""" |
51
|
|
|
return self._record_name(variable.name) |
52
|
|
|
|
53
|
|
|
def add_records(self, log, record_tuples): |
54
|
|
|
"""Helper function to add monitoring records to the log.""" |
55
|
|
|
for name, value in record_tuples: |
56
|
|
|
if not name: |
57
|
|
|
raise ValueError("monitor variable without name") |
58
|
|
|
log.current_row[self._record_name(name)] = value |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
class DataStreamMonitoring(SimpleExtension, MonitoringExtension): |
62
|
|
|
"""Monitors Theano variables and monitored-quantities on a data stream. |
63
|
|
|
|
64
|
|
|
By default monitoring is done before the first and after every epoch. |
65
|
|
|
|
66
|
|
|
Parameters |
67
|
|
|
---------- |
68
|
|
|
variables : list of :class:`~tensor.TensorVariable` and |
69
|
|
|
:class:`MonitoredQuantity` |
70
|
|
|
The variables to monitor. The variable names are used as record |
71
|
|
|
names in the logs. |
72
|
|
|
updates : list of tuples or :class:`~collections.OrderedDict` or None |
73
|
|
|
:class:`~tensor.TensorSharedVariable` updates to be performed |
74
|
|
|
during evaluation. This parameter is only for Theano variables. |
75
|
|
|
Be careful not to update any model parameters as this is not |
76
|
|
|
intended to alter your model in any meaningful way. A typical |
77
|
|
|
use case of this option arises when the theano function used |
78
|
|
|
for evaluation contains a call to :func:`~theano.scan` which |
79
|
|
|
might have returned shared variable updates. |
80
|
|
|
data_stream : instance of :class:`.DataStream` |
81
|
|
|
The data stream to monitor on. A data epoch is requested |
82
|
|
|
each time monitoring is done. |
83
|
|
|
|
84
|
|
|
""" |
85
|
|
|
def __init__(self, variables, data_stream, updates=None, **kwargs): |
86
|
|
|
kwargs.setdefault("after_epoch", True) |
87
|
|
|
kwargs.setdefault("before_first_epoch", True) |
88
|
|
|
super(DataStreamMonitoring, self).__init__(**kwargs) |
89
|
|
|
self._evaluator = DatasetEvaluator(variables, updates) |
90
|
|
|
self.data_stream = data_stream |
91
|
|
|
|
92
|
|
|
def do(self, callback_name, *args): |
|
|
|
|
93
|
|
|
"""Write the values of monitored variables to the log.""" |
94
|
|
|
logger.info("Monitoring on auxiliary data started") |
95
|
|
|
value_dict = self._evaluator.evaluate(self.data_stream) |
96
|
|
|
self.add_records(self.main_loop.log, value_dict.items()) |
97
|
|
|
logger.info("Monitoring on auxiliary data finished") |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
class TrainingDataMonitoring(SimpleExtension, MonitoringExtension): |
101
|
|
|
"""Monitors values of Theano variables on training batches. |
102
|
|
|
|
103
|
|
|
Use this extension to monitor a quantity on every training batch |
104
|
|
|
cheaply. It integrates with the training algorithm in order to avoid |
105
|
|
|
recomputing same things several times. For instance, if you are |
106
|
|
|
training a network and you want to log the norm of the gradient on |
107
|
|
|
every batch, the backpropagation will only be done once. By |
108
|
|
|
controlling the frequency with which the :meth:`do` method is called, |
109
|
|
|
you can aggregate the monitored variables, e.g. only log the gradient |
110
|
|
|
norm average over an epoch. |
111
|
|
|
|
112
|
|
|
Parameters |
113
|
|
|
---------- |
114
|
|
|
variables : list of :class:`~tensor.TensorVariable` or |
115
|
|
|
:class:`~blocks.monitoring.aggregation.MonitoredQuantity` |
116
|
|
|
The variables or non-Theano quantities to monitor. |
117
|
|
|
The variable names are used as record names in the logs. |
118
|
|
|
|
119
|
|
|
Notes |
120
|
|
|
----- |
121
|
|
|
All the monitored variables are evaluated _before_ the parameter |
122
|
|
|
update. |
123
|
|
|
|
124
|
|
|
Requires the training algorithm to be an instance of |
125
|
|
|
:class:`.UpdatesAlgorithm`. |
126
|
|
|
|
127
|
|
|
""" |
128
|
|
|
def __init__(self, variables, **kwargs): |
129
|
|
|
kwargs.setdefault("before_training", True) |
130
|
|
|
super(TrainingDataMonitoring, self).__init__(**kwargs) |
131
|
|
|
self.add_condition(['after_batch'], arguments=('just_aggregate',)) |
132
|
|
|
|
133
|
|
|
self._non_variables = [] |
134
|
|
|
self._variables = [] |
135
|
|
|
for variable_or_not in variables: |
136
|
|
|
if isinstance(variable_or_not, theano.Variable): |
137
|
|
|
self._variables.append(variable_or_not) |
138
|
|
|
elif isinstance(variable_or_not, MonitoredQuantity): |
139
|
|
|
self._non_variables.append(variable_or_not) |
140
|
|
|
else: |
141
|
|
|
raise ValueError("can not monitor {}".format(variable_or_not)) |
142
|
|
|
|
143
|
|
|
self._non_variables = MonitoredQuantityBuffer(self._non_variables) |
144
|
|
|
self._required_for_non_variables = AggregationBuffer( |
145
|
|
|
[take_last(v) for v in self._non_variables.requires]) |
146
|
|
|
self._variables = AggregationBuffer( |
147
|
|
|
self._variables, use_take_last=True) |
148
|
|
|
self._last_time_called = -1 |
149
|
|
|
|
150
|
|
|
def do(self, callback_name, *args): |
151
|
|
|
"""Initializes the buffer or commits the values to the log. |
152
|
|
|
|
153
|
|
|
What this method does depends on from what callback it is called |
154
|
|
|
and with which arguments. When called within `before_training`, it |
155
|
|
|
initializes the aggregation buffer and instructs the training |
156
|
|
|
algorithm what additional computations should be carried at each |
157
|
|
|
step by adding corresponding updates to it. In most_other cases it |
158
|
|
|
writes aggregated values of the monitored variables to the log. An |
159
|
|
|
exception is when an argument `just_aggregate` is given: in this |
160
|
|
|
cases it updates the values of monitored non-Theano quantities, but |
161
|
|
|
does not write anything to the log. |
162
|
|
|
|
163
|
|
|
""" |
164
|
|
|
data, args = self.parse_args(callback_name, args) |
|
|
|
|
165
|
|
|
if callback_name == 'before_training': |
166
|
|
|
if not isinstance(self.main_loop.algorithm, |
167
|
|
|
UpdatesAlgorithm): |
168
|
|
|
raise ValueError |
169
|
|
|
self.main_loop.algorithm.add_updates( |
170
|
|
|
self._variables.accumulation_updates) |
171
|
|
|
self.main_loop.algorithm.add_updates( |
172
|
|
|
self._required_for_non_variables.accumulation_updates) |
173
|
|
|
self._variables.initialize_aggregators() |
174
|
|
|
self._required_for_non_variables.initialize_aggregators() |
175
|
|
|
self._non_variables.initialize_quantities() |
176
|
|
|
else: |
177
|
|
|
# When called first time at any iterations, update |
178
|
|
|
# monitored non-Theano quantities |
179
|
|
|
if (self.main_loop.status['iterations_done'] > |
180
|
|
|
self._last_time_called): |
181
|
|
|
self._non_variables.aggregate_quantities( |
182
|
|
|
list(self._required_for_non_variables |
183
|
|
|
.get_aggregated_values().values())) |
184
|
|
|
self._required_for_non_variables.initialize_aggregators() |
185
|
|
|
self._last_time_called = ( |
186
|
|
|
self.main_loop.status['iterations_done']) |
187
|
|
|
# If only called to update non-Theano quantities, |
188
|
|
|
# do just that |
189
|
|
|
if args == ('just_aggregate',): |
190
|
|
|
return |
191
|
|
|
# Otherwise, also output current values of from the accumulators |
192
|
|
|
# to the log. |
193
|
|
|
self.add_records( |
194
|
|
|
self.main_loop.log, |
195
|
|
|
self._variables.get_aggregated_values().items()) |
196
|
|
|
self._variables.initialize_aggregators() |
197
|
|
|
self.add_records( |
198
|
|
|
self.main_loop.log, |
199
|
|
|
self._non_variables.get_aggregated_values().items()) |
200
|
|
|
self._non_variables.initialize_quantities() |
201
|
|
|
|