1
|
|
|
package models |
2
|
|
|
|
3
|
|
|
import ( |
4
|
|
|
"gorm.io/gorm" |
5
|
|
|
) |
6
|
|
|
|
7
|
|
|
// Mem structure |
8
|
|
|
type Mem struct { |
9
|
|
|
gorm.Model `swaggerignore:"true"` |
10
|
|
|
UserID uint `json:"user_id" example:"1"` |
11
|
|
|
User User `swaggerignore:"true"` |
12
|
|
|
CardID uint `json:"card_id" example:"1"` |
13
|
|
|
Card Card `swaggerignore:"true"` |
14
|
|
|
Quality MemQuality `json:"quality" example:"0"` |
15
|
|
|
Repetition uint `json:"repetition" example:"0" ` |
16
|
|
|
Efactor float32 `json:"e_factor" example:"2.5"` |
17
|
|
|
Interval uint `json:"interval" example:"0"` |
18
|
|
|
LearningStage LearningStage `json:"learning_stage"` |
19
|
|
|
} |
20
|
|
|
|
21
|
|
|
// MemQuality enum type |
22
|
|
|
type MemQuality int64 |
23
|
|
|
|
24
|
|
|
const ( |
25
|
|
|
MemQualityNone MemQuality = -1 |
26
|
|
|
MemQualityBlackout MemQuality = iota |
27
|
|
|
MemQualityErrorMCQ |
28
|
|
|
MemQualityErrorHints |
29
|
|
|
MemQualityError |
30
|
|
|
MemQualityGoodMCQ |
31
|
|
|
MemQualityPerfect |
32
|
|
|
) |
33
|
|
|
|
34
|
|
|
// FillDefaultValues to fill a Mem with default values for given UserID and CardID |
35
|
|
|
func (mem *Mem) FillDefaultValues(userID, cardID uint) { |
36
|
|
|
mem.UserID = userID |
37
|
|
|
mem.CardID = cardID |
38
|
|
|
mem.Quality = MemQualityBlackout |
39
|
|
|
mem.Repetition = 0 |
40
|
|
|
mem.Efactor = 2.5 |
41
|
|
|
mem.Interval = 0 |
42
|
|
|
mem.LearningStage = StageToLearn |
43
|
|
|
} |
44
|
|
|
|
45
|
|
|
// ComputeEfactor calculates and sets new efactor using oldEfactor and MemQuality |
46
|
|
|
func (mem *Mem) ComputeEfactor(oldEfactor float32, quality MemQuality) { |
47
|
|
|
eFactor := oldEfactor + (0.1 - (5.0-float32(quality))*(0.08+(5-float32(quality)))*0.02) |
48
|
|
|
|
49
|
|
|
if eFactor < 1.3 { |
50
|
|
|
mem.Efactor = 1.3 |
51
|
|
|
} else { |
52
|
|
|
mem.Efactor = eFactor |
53
|
|
|
} |
54
|
|
|
} |
55
|
|
|
|
56
|
|
|
// ComputeTrainingEfactor calculates and sets new efactor using oldEfactor and MemQuality |
57
|
|
|
// TrainingEfactor is a median between oldEfactor and ComputeEfactor |
58
|
|
|
func (mem *Mem) ComputeTrainingEfactor(oldEfactor float32, quality MemQuality) { |
59
|
|
|
mem.ComputeEfactor(oldEfactor, quality) |
60
|
|
|
computedTrainingEfactor := (oldEfactor + mem.Efactor) / 2 |
61
|
|
|
if computedTrainingEfactor < 1.3 { |
62
|
|
|
mem.Efactor = 1.3 |
63
|
|
|
} else { |
64
|
|
|
mem.Efactor = computedTrainingEfactor |
65
|
|
|
} |
66
|
|
|
} |
67
|
|
|
|
68
|
|
|
// GetCardType returns the current CardType |
69
|
|
|
// The CardType is CardMCQ if internal conditions are matched. |
70
|
|
|
// Otherwise, it's Card.Type |
71
|
|
|
func (mem *Mem) GetCardType() CardType { |
72
|
|
|
if mem.IsMCQ() { |
73
|
|
|
return CardMCQ |
74
|
|
|
} |
75
|
|
|
|
76
|
|
|
return mem.Card.Type |
77
|
|
|
} |
78
|
|
|
|
79
|
|
|
// ComputeInterval calculates and sets the interval between reviews |
80
|
|
|
func (mem *Mem) ComputeInterval(oldInterval uint, eFactor float32, repetition uint) { |
81
|
|
|
switch repetition { |
82
|
|
|
case 0: |
83
|
|
|
mem.Interval = 1 |
84
|
|
|
case 1, 2: |
85
|
|
|
mem.Interval = 2 |
86
|
|
|
case 3: |
87
|
|
|
mem.Interval = 3 |
88
|
|
|
default: |
89
|
|
|
mem.Interval = uint(float32(oldInterval)*eFactor*0.75) + 1 |
90
|
|
|
} |
91
|
|
|
} |
92
|
|
|
|
93
|
|
|
func (mem *Mem) ComputeLearningStage() { |
94
|
|
|
switch { |
95
|
|
|
case mem.Repetition > 3 && mem.Repetition < 7: |
96
|
|
|
mem.LearningStage = StageReviewing |
97
|
|
|
case mem.Repetition > 7: |
98
|
|
|
mem.LearningStage = StageKnown |
99
|
|
|
default: |
100
|
|
|
mem.LearningStage = StageLearning |
101
|
|
|
} |
102
|
|
|
} |
103
|
|
|
|
104
|
|
|
// ComputeQualitySuccess sets the answer Quality |
105
|
|
|
func (mem *Mem) ComputeQualitySuccess() { |
106
|
|
|
switch { |
107
|
|
|
case mem.GetCardType() == CardMCQ || mem.LearningStage == StageToLearn: |
108
|
|
|
mem.Quality = MemQualityError |
109
|
|
|
case mem.LearningStage == StageKnown: |
110
|
|
|
mem.Quality = MemQualityPerfect |
111
|
|
|
default: |
112
|
|
|
mem.Quality = MemQualityGoodMCQ |
113
|
|
|
} |
114
|
|
|
} |
115
|
|
|
|
116
|
|
|
// ComputeQualityFail sets the answer Quality |
117
|
|
|
func (mem *Mem) ComputeQualityFail() { |
118
|
|
|
switch { |
119
|
|
|
case mem.GetCardType() == CardMCQ: |
120
|
|
|
if mem.LearningStage == StageToLearn { |
121
|
|
|
mem.Quality = MemQualityBlackout |
122
|
|
|
} else { |
123
|
|
|
mem.Quality = MemQualityErrorMCQ |
124
|
|
|
} |
125
|
|
|
case mem.LearningStage == StageLearning: |
126
|
|
|
mem.Quality = MemQualityErrorMCQ |
127
|
|
|
default: |
128
|
|
|
mem.Quality = MemQualityErrorHints |
129
|
|
|
} |
130
|
|
|
} |
131
|
|
|
|
132
|
|
|
// IsMCQ returns if the Mem should be an MCQ or not. |
133
|
|
|
// It doesn't include Card.Type checks |
134
|
|
|
func (mem *Mem) IsMCQ() bool { |
135
|
|
|
return mem.LearningStage < StageReviewing || mem.Efactor <= 1.7 || mem.Repetition < 2 || (mem.Efactor <= 2.3 && mem.Repetition < 3) |
136
|
|
|
} |
137
|
|
|
|