1
|
|
|
<?php |
2
|
|
|
declare(strict_types=1); |
3
|
|
|
/** |
4
|
|
|
* @copyright Copyright (c) 2023, Matias De lellis |
5
|
|
|
* |
6
|
|
|
* @author Matias De lellis <[email protected]> |
7
|
|
|
* |
8
|
|
|
* @license AGPL-3.0-or-later |
9
|
|
|
* |
10
|
|
|
* This code is free software: you can redistribute it and/or modify |
11
|
|
|
* it under the terms of the GNU Affero General Public License, version 3, |
12
|
|
|
* as published by the Free Software Foundation. |
13
|
|
|
* |
14
|
|
|
* This program is distributed in the hope that it will be useful, |
15
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
16
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17
|
|
|
* GNU Affero General Public License for more details. |
18
|
|
|
* |
19
|
|
|
* You should have received a copy of the GNU Affero General Public License, version 3, |
20
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/> |
21
|
|
|
* |
22
|
|
|
*/ |
23
|
|
|
|
24
|
|
|
namespace OCA\FaceRecognition\Clusterer; |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
/** |
28
|
|
|
* This class implements the graph clustering algorithm described in the |
29
|
|
|
* paper: Chinese Whispers - an Efficient Graph Clustering Algorithm and its |
30
|
|
|
* Application to Natural Language Processing Problems by Chris Biemann. |
31
|
|
|
* |
32
|
|
|
* In particular, it tries to be a shameless copy of the original dlib |
33
|
|
|
* implementation. |
34
|
|
|
* - https://github.com/davisking/dlib/blob/master/dlib/clustering/chinese_whispers.h |
35
|
|
|
*/ |
36
|
|
|
class ChineseWhispers { |
37
|
|
|
|
38
|
|
|
/** |
39
|
|
|
* Cluster the dataset by assigning a label to each sample.from the edges |
40
|
|
|
*/ |
41
|
|
|
static public function predict(array &$edges, array &$labels, int $num_iterations = 100) |
42
|
|
|
{ |
43
|
|
|
// To improve the stability of the clusters, we must |
44
|
|
|
// iterate the neighbors in a pseudo-random way. |
45
|
|
|
mt_srand(2023); |
46
|
|
|
|
47
|
|
|
$labels = []; |
48
|
|
|
if (count($edges) == 0) |
49
|
|
|
return 0; |
50
|
|
|
|
51
|
|
|
$neighbors = []; |
52
|
|
|
self::find_neighbor_ranges($edges, $neighbors); |
53
|
|
|
|
54
|
|
|
// Initialize the labels, each node gets a different label. |
55
|
|
|
for ($i = 0; $i < count($neighbors); ++$i) |
|
|
|
|
56
|
|
|
$labels[$i] = $i; |
57
|
|
|
|
58
|
|
|
for ($iter = 0; $iter < count($neighbors)*$num_iterations; ++$iter) |
59
|
|
|
{ |
60
|
|
|
// Pick a random node. |
61
|
|
|
$idx = mt_rand()%count($neighbors); |
62
|
|
|
|
63
|
|
|
// Count how many times each label happens amongst our neighbors. |
64
|
|
|
$labels_to_counts = []; |
65
|
|
|
$end = $neighbors[$idx][1]; |
66
|
|
|
|
67
|
|
|
for ($i = $neighbors[$idx][0]; $i != $end; ++$i) |
68
|
|
|
{ |
69
|
|
|
$iLabelFirst = $edges[$i][1]; |
70
|
|
|
$iLabel = $labels[$iLabelFirst]; |
71
|
|
|
if (isset($labels_to_counts[$iLabel])) |
72
|
|
|
$labels_to_counts[$iLabel]++; |
73
|
|
|
else |
74
|
|
|
$labels_to_counts[$iLabel] = 1; |
75
|
|
|
} |
76
|
|
|
|
77
|
|
|
// find the most common label |
78
|
|
|
// std::map<unsigned long, double>::iterator i; |
79
|
|
|
$best_score = PHP_INT_MIN; |
80
|
|
|
$best_label = $labels[$idx]; |
81
|
|
|
foreach ($labels_to_counts as $key => $value) |
82
|
|
|
{ |
83
|
|
|
if ($value > $best_score) |
84
|
|
|
{ |
85
|
|
|
$best_score = $value; |
86
|
|
|
$best_label = $key; |
87
|
|
|
} |
88
|
|
|
} |
89
|
|
|
|
90
|
|
|
$labels[$idx] = $best_label; |
91
|
|
|
} |
92
|
|
|
|
93
|
|
|
// Remap the labels into a contiguous range. First we find the |
94
|
|
|
// mapping. |
95
|
|
|
$label_remap = []; |
96
|
|
|
for ($i = 0; $i < count($labels); ++$i) |
|
|
|
|
97
|
|
|
{ |
98
|
|
|
$next_id = count($label_remap); |
99
|
|
|
if (!isset($label_remap[$labels[$i]])) |
100
|
|
|
$label_remap[$labels[$i]] = $next_id; |
101
|
|
|
} |
102
|
|
|
// now apply the mapping to all the labels. |
103
|
|
|
for ($i = 0; $i < count($labels); ++$i) |
|
|
|
|
104
|
|
|
{ |
105
|
|
|
$labels[$i] = $label_remap[$labels[$i]]; |
106
|
|
|
} |
107
|
|
|
|
108
|
|
|
return count($label_remap); |
109
|
|
|
} |
110
|
|
|
|
111
|
|
|
static function find_neighbor_ranges (&$edges, &$neighbors) { |
|
|
|
|
112
|
|
|
// setup neighbors so that [neighbors[i].first, neighbors[i].second) is the range |
113
|
|
|
// within edges that contains all node i's edges. |
114
|
|
|
$num_nodes = self::max_index_plus_one($edges); |
115
|
|
|
for ($i = 0; $i < $num_nodes; ++$i) $neighbors[$i] = [0, 0]; |
116
|
|
|
$cur_node = 0; |
117
|
|
|
$start_idx = 0; |
118
|
|
|
for ($i = 0; $i < count($edges); ++$i) |
|
|
|
|
119
|
|
|
{ |
120
|
|
|
if ($edges[$i][0] != $cur_node) |
121
|
|
|
{ |
122
|
|
|
$neighbors[$cur_node] = [$start_idx, $i]; |
123
|
|
|
$start_idx = $i; |
124
|
|
|
$cur_node = $edges[$i][0]; |
125
|
|
|
} |
126
|
|
|
} |
127
|
|
|
if (count($neighbors) !== 0) |
128
|
|
|
$neighbors[$cur_node] = [$start_idx, count($edges)]; |
129
|
|
|
} |
130
|
|
|
|
131
|
|
|
static function max_index_plus_one ($pairs): int { |
|
|
|
|
132
|
|
|
if (count($pairs) === 0) |
133
|
|
|
{ |
134
|
|
|
return 0; |
135
|
|
|
} |
136
|
|
|
else { |
137
|
|
|
$max_idx = 0; |
138
|
|
|
for ($i = 0; $i < count($pairs); ++$i) |
|
|
|
|
139
|
|
|
{ |
140
|
|
|
if ($pairs[$i][0] > $max_idx) |
141
|
|
|
$max_idx = $pairs[$i][0]; |
142
|
|
|
if ($pairs[$i][1] > $max_idx) |
143
|
|
|
$max_idx = $pairs[$i][1]; |
144
|
|
|
} |
145
|
|
|
return $max_idx + 1; |
146
|
|
|
} |
147
|
|
|
} |
148
|
|
|
|
149
|
|
|
static function convert_unordered_to_ordered (&$edges, &$out_edges) |
|
|
|
|
150
|
|
|
{ |
151
|
|
|
$out_edges = []; |
152
|
|
|
for ($i = 0; $i < count($edges); ++$i) |
|
|
|
|
153
|
|
|
{ |
154
|
|
|
$out_edges[] = [$edges[$i][0], $edges[$i][1]]; |
155
|
|
|
if ($edges[$i][0] != $edges[$i][1]) |
156
|
|
|
$out_edges[] = [$edges[$i][1], $edges[$i][0]]; |
157
|
|
|
} |
158
|
|
|
} |
159
|
|
|
} |
160
|
|
|
|
If the size of the collection does not change during the iteration, it is generally a good practice to compute it beforehand, and not on each iteration: