Total Complexity | 49 |
Total Lines | 187 |
Duplicated Lines | 0 % |
Changes | 0 |
Complex classes like distance often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use distance, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
15 | class distance extends complexCommonTextSimilarities |
||
16 | { |
||
17 | public static function jaroWinkler($a, $b, $round=2) |
||
18 | { |
||
19 | if (!is_string($a)||!is_string($b)) { |
||
20 | return false; |
||
21 | } |
||
22 | static $distance=array(); |
||
23 | static $previous=array(); |
||
24 | if (array($a,$b)===$previous) { |
||
25 | return $distance; |
||
26 | } |
||
27 | $previous=array($a,$b); |
||
28 | return self::getJWDistance($a, $b, $distance, $round); |
||
29 | } |
||
30 | |||
31 | |||
32 | |||
33 | private static function getJWDistance(&$a, &$b, &$distance, $round) |
||
34 | { |
||
35 | extract(self::prepareJaroWinkler($a, $b)); |
||
36 | for ($i=0,$min=min(count($a), count($b)),$t=0;$i<$min;$i++) { |
||
37 | if ($a[$i]!==$b[$i]) { |
||
38 | $t++; |
||
39 | } |
||
40 | } |
||
41 | $t/=2; |
||
42 | $distance['jaro']=1/3*($corresponding/$ca+$corresponding/$cb+($corresponding-$t)/$corresponding); |
||
43 | $distance['jaro-winkler']=$distance['jaro']+(min($longCommonSubstr, 4)*0.1*(1-$distance['jaro'])); |
||
44 | $distance=array_map(function ($v) use ($round) { |
||
45 | return round($v, $round); |
||
46 | }, $distance); |
||
47 | |||
48 | return $distance; |
||
49 | } |
||
50 | |||
51 | private static function prepareJaroWinkler(&$a, &$b) |
||
52 | { |
||
53 | $a=self::split($a); |
||
54 | $b=self::split($b); |
||
55 | $transpositions=array('a'=>array(),'b'=>array(),'corresponding'=>0,'longCommonSubstr'=>0,'ca'=>count($a),'cb'=>count($b)); |
||
|
|||
56 | $Δ=max($transpositions['ca'], $transpositions['cb'])/2-1; |
||
57 | self::jwMatches($a, $b, $transpositions, $Δ); |
||
58 | ksort($transpositions['a']); |
||
59 | ksort($transpositions['b']); |
||
60 | $transpositions['a']=array_values($transpositions['a']); |
||
61 | $transpositions['b']=array_values($transpositions['b']); |
||
62 | return $transpositions; |
||
63 | } |
||
64 | |||
65 | private static function jwMatches(&$a, &$b, &$transpositions, $Δ) |
||
66 | { |
||
67 | foreach ($a as $ind=>$chr) { |
||
68 | foreach ($b as $index=>$char) { |
||
69 | if ($chr===$char&&(abs($index-$ind)<=$Δ)) { |
||
70 | if ($ind!==$index) { |
||
71 | $transpositions['a'][$ind]=$chr; |
||
72 | $transpositions['b'][$index]=$char; |
||
73 | } else { |
||
74 | if ($ind-1<=$transpositions['longCommonSubstr']) { |
||
75 | $transpositions['longCommonSubstr']++; |
||
76 | } |
||
77 | } |
||
78 | $transpositions['corresponding']++; |
||
79 | } |
||
80 | } |
||
81 | } |
||
82 | } |
||
83 | |||
84 | |||
85 | public static function hamming($a, $b) |
||
86 | { |
||
87 | if (!is_string($a)||!is_string($b)||(strlen($a)!==strlen($b))) { |
||
88 | return false; |
||
89 | } |
||
90 | static $distance=0; |
||
91 | static $previous=array(); |
||
92 | if (array($a,$b)===$previous) { |
||
93 | return $distance; |
||
94 | } |
||
95 | $previous=array($a,$b); |
||
96 | $a=self::split($a); |
||
97 | $b=self::split($b); |
||
98 | $distance=count(array_diff_assoc($a, $b)); |
||
99 | return $distance; |
||
100 | } |
||
101 | |||
102 | public static function dice($a, $b, $round=2) |
||
103 | { |
||
104 | if (!is_string($a)||!is_string($b)) { |
||
105 | return false; |
||
106 | } |
||
107 | if (empty($a)||empty($b)) { |
||
108 | return 0.0; |
||
109 | } |
||
110 | if ($a===$b) { |
||
111 | return 1.0; |
||
112 | } |
||
113 | |||
114 | static $distance=0; |
||
115 | static $previous=array(); |
||
116 | if (array($a,$b)===$previous) { |
||
117 | return $distance; |
||
118 | } |
||
119 | $previous=array($a,$b); |
||
120 | $a=self::split($a, 2); |
||
121 | $b=self::split($b, 2); |
||
122 | $ca=($caGrams=count($a))*2-self::getEndStrLen($a); |
||
123 | $cb=($cbGrams=count($b))*2-self::getEndStrLen($b); |
||
124 | $distance=round(2*count($caGrams>$cbGrams?array_intersect($a, $b):array_intersect($b, $a))/($ca+$cb), $round); |
||
125 | return $distance; |
||
126 | } |
||
127 | |||
128 | private static function getEndStrLen($a) |
||
129 | { |
||
130 | if (function_exists('array_key_last')) { |
||
131 | $end=array_key_last($a); |
||
132 | $end=(isset($end[1]))?0:1; |
||
133 | } else { |
||
134 | $end=end($a); |
||
135 | $end=(isset($end[1]))?0:1; |
||
136 | reset($a); |
||
137 | } |
||
138 | return $end; |
||
139 | } |
||
140 | |||
141 | public static function levenshtein($a, $b) |
||
142 | { |
||
143 | if (!is_string($a)||!is_string($b)) { |
||
144 | return false; |
||
145 | } |
||
146 | |||
147 | |||
148 | static $distance=0; |
||
149 | static $previous=array(); |
||
150 | if (array($a,$b)===$previous) { |
||
151 | return $distance; |
||
152 | } |
||
153 | $previous=array($a,$b); |
||
154 | $a=self::split($a); |
||
155 | $b=self::split($b); |
||
156 | $ca = count($a); |
||
157 | $cb = count($b); |
||
158 | $dis = range(0, $cb); |
||
159 | self::BuildLevenshteinCostMatrix($a, $b, $ca, $cb, $dis); |
||
160 | |||
161 | return $distance=$dis[$cb]; |
||
162 | } |
||
163 | |||
164 | |||
165 | public static function levenshteinDamerau($a, $b) |
||
166 | { |
||
167 | if (!is_string($a)||!is_string($b)) { |
||
168 | return false; |
||
169 | } |
||
170 | |||
171 | static $distance=0; |
||
172 | static $previous=array(); |
||
173 | if (array($a,$b)===$previous) { |
||
174 | return $distance; |
||
175 | } |
||
176 | $previous=array($a,$b); |
||
177 | $a=self::split($a); |
||
178 | $b=self::split($b); |
||
179 | $ca = count($a); |
||
180 | $cb = count($b); |
||
181 | $dis = range(0, $cb); |
||
182 | self::BuildLevenshteinCostMatrix($a, $b, $ca, $cb, $dis, true); |
||
183 | |||
184 | return $distance=$dis[$cb]; |
||
185 | } |
||
186 | |||
187 | private static function BuildLevenshteinCostMatrix($a, $b, $ca, $cb, &$dis, $damerau=false) |
||
202 | } |
||
203 | } |
||
204 | } |
||
205 | |||
206 | |||
207 | } |
||
208 |