Conditions | 19 |
Paths | 56 |
Total Lines | 83 |
Code Lines | 46 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | <?php |
||
35 | public static function init_rs_char($symsize, $gfpoly, $fcr, $prim, $nroots, $pad) |
||
36 | { |
||
37 | // Common code for intializing a Reed-Solomon control block (char or int symbols) |
||
38 | // Copyright 2004 Phil Karn, KA9Q |
||
39 | // May be used under the terms of the GNU Lesser General Public License (LGPL) |
||
40 | |||
41 | $rs = null; |
||
42 | |||
43 | // Check parameter ranges |
||
44 | if($symsize < 0 || $symsize > 8) return $rs; |
||
45 | if($fcr < 0 || $fcr >= (1<<$symsize)) return $rs; |
||
46 | if($prim <= 0 || $prim >= (1<<$symsize)) return $rs; |
||
47 | if($nroots < 0 || $nroots >= (1<<$symsize)) return $rs; // Can't have more roots than symbol values! |
||
48 | if($pad < 0 || $pad >= ((1<<$symsize) -1 - $nroots)) return $rs; // Too much padding |
||
49 | |||
50 | $rs = new QRrsItem(); |
||
51 | $rs->mm = $symsize; |
||
52 | $rs->nn = (1<<$symsize)-1; |
||
53 | $rs->pad = $pad; |
||
54 | |||
55 | $rs->alpha_to = array_fill(0, $rs->nn+1, 0); |
||
56 | $rs->index_of = array_fill(0, $rs->nn+1, 0); |
||
57 | |||
58 | // PHP style macro replacement ;) |
||
59 | $NN =& $rs->nn; |
||
60 | $A0 =& $NN; |
||
61 | |||
62 | // Generate Galois field lookup tables |
||
63 | $rs->index_of[0] = $A0; // log(zero) = -inf |
||
64 | $rs->alpha_to[$A0] = 0; // alpha**-inf = 0 |
||
65 | $sr = 1; |
||
66 | |||
67 | for($i=0; $i<$rs->nn; $i++) { |
||
68 | $rs->index_of[$sr] = $i; |
||
69 | $rs->alpha_to[$i] = $sr; |
||
70 | $sr <<= 1; |
||
71 | if($sr & (1<<$symsize)) { |
||
72 | $sr ^= $gfpoly; |
||
73 | } |
||
74 | $sr &= $rs->nn; |
||
75 | } |
||
76 | |||
77 | if($sr != 1){ |
||
78 | // field generator polynomial is not primitive! |
||
79 | $rs = NULL; |
||
80 | return $rs; |
||
81 | } |
||
82 | |||
83 | /* Form RS code generator polynomial from its roots */ |
||
84 | $rs->genpoly = array_fill(0, $nroots+1, 0); |
||
85 | |||
86 | $rs->fcr = $fcr; |
||
87 | $rs->prim = $prim; |
||
88 | $rs->nroots = $nroots; |
||
89 | $rs->gfpoly = $gfpoly; |
||
90 | |||
91 | /* Find prim-th root of 1, used in decoding */ |
||
92 | for($iprim=1;($iprim % $prim) != 0;$iprim += $rs->nn) |
||
93 | ; // intentional empty-body loop! |
||
94 | |||
95 | $rs->iprim = (int)($iprim / $prim); |
||
96 | $rs->genpoly[0] = 1; |
||
97 | |||
98 | for ($i = 0,$root=$fcr*$prim; $i < $nroots; $i++, $root += $prim) { |
||
99 | $rs->genpoly[$i+1] = 1; |
||
100 | |||
101 | // Multiply rs->genpoly[] by @**(root + x) |
||
102 | for ($j = $i; $j > 0; $j--) { |
||
103 | if ($rs->genpoly[$j] != 0) { |
||
104 | $rs->genpoly[$j] = $rs->genpoly[$j-1] ^ $rs->alpha_to[$rs->modnn($rs->index_of[$rs->genpoly[$j]] + $root)]; |
||
105 | } else { |
||
106 | $rs->genpoly[$j] = $rs->genpoly[$j-1]; |
||
107 | } |
||
108 | } |
||
109 | // rs->genpoly[0] can never be zero |
||
110 | $rs->genpoly[0] = $rs->alpha_to[$rs->modnn($rs->index_of[$rs->genpoly[0]] + $root)]; |
||
111 | } |
||
112 | |||
113 | // convert rs->genpoly[] to index form for quicker encoding |
||
114 | for ($i = 0; $i <= $nroots; $i++) |
||
115 | $rs->genpoly[$i] = $rs->index_of[$rs->genpoly[$i]]; |
||
116 | |||
117 | return $rs; |
||
118 | } |
||
162 |