1 | /** |
||
2 | * A module to calculate a move in Gomoku |
||
3 | * |
||
4 | * Ripped and modified from Zebra_Gomoku by Stefan Gabos. |
||
5 | * |
||
6 | * Some day I have to write my own... |
||
7 | * |
||
8 | * Visit {@link https://github.com/stefangabos/Zebra_Gomoku} for more information. |
||
9 | */ |
||
10 | "use strict"; |
||
11 | |||
12 | function nextBestMove(board, boardSize) { |
||
13 | var m, |
||
14 | l, |
||
15 | position, |
||
16 | type, |
||
17 | line, |
||
18 | totalCells, |
||
19 | consecutiveCells, |
||
20 | emptySides, |
||
21 | bestScore, |
||
22 | cellScore, |
||
23 | directionScore, |
||
24 | score; |
||
25 | |||
26 | // iterate through all the board's cells |
||
27 | 16 | for (var i = boardSize * boardSize; i--; ) { |
|
28 | // skip to next cell if this cell is owned by the computer |
||
29 | // if (board[i] == 1) continue; |
||
30 | |||
31 | // by default, the best move is the first free cell |
||
32 | // (position, attack, defense) |
||
33 | |||
34 | 1600 | if (bestScore === undefined) { |
|
0 ignored issues
–
show
Bug
introduced
by
![]() |
|||
35 | 16 | bestScore = [i, 0, 0]; |
|
36 | } |
||
37 | // we will give a "score" to the position, |
||
38 | // based on its surroundings horizontally, vertically and |
||
39 | // on both diagonals; for example: for a row like 000XXPXX000 (where "0" means empty, |
||
40 | // "X" represents the opponent's pieces and "P" is the position for which we are |
||
41 | // determining the "score", we would check |
||
42 | // 0|00XXP|XX000, 00|0XXPX|X000, 000|XXPXX|000, 000X|XPXX0|00, 000XX|PXX00|0, |
||
43 | // and then we would do the same on the vertical, and on both diagonals) |
||
44 | |||
45 | // cell's default score (attack and defense) |
||
46 | 1600 | cellScore = [0, 0]; |
|
47 | |||
48 | // the 4 directions to check: vertical, horizontal, diagonal /, diagonal \ (in this order) |
||
49 | 1600 | for (var j = 4; j--; ) { |
|
50 | // the default score for the direction we're checking |
||
51 | 6400 | directionScore = [0, 0]; |
|
52 | |||
53 | // check the 5 possible outcomes, as described above |
||
54 | // (if we're checking whether the player won, |
||
55 | // we'll do this iteration only once, checking for 5 in a row) |
||
56 | 6400 | for (var k = !board[i] ? 5 : 1; k--; ) { |
|
57 | // initialize the type of cells we're looking for, |
||
58 | // and the array with the cells on the current direction |
||
59 | 15680 | type = board[i] || undefined; |
|
60 | 15680 | line = []; |
|
61 | |||
62 | // check the 5 pieces for each possible outcome, plus the 2 sides |
||
63 | 15680 | for (l = 7; l--; ) { |
|
64 | // used to compute position |
||
65 | 73128 | m = -5 + k + l; |
|
66 | 73128 | var n = i % boardSize; |
|
67 | |||
68 | 73128 | if ( |
|
69 | // vertical |
||
70 | ((j === 0 && |
||
71 | (position = i + boardSize * m) !== false && |
||
72 | n == position % boardSize) || |
||
73 | // horizontal |
||
74 | (j == 1 && |
||
75 | (position = i + m) !== false && |
||
76 | ~~(position / boardSize) == ~~(i / boardSize)) || |
||
77 | // diagonal / |
||
78 | (j == 2 && |
||
79 | (position = i - boardSize * m + m) !== false && |
||
80 | ((position > i && position % boardSize < n) || |
||
81 | (position < i && position % boardSize > n) || |
||
82 | position == i)) || |
||
83 | // diagonal \ |
||
84 | ((j == 3 && |
||
85 | (position = i + boardSize * m + m) !== false && |
||
86 | ((position < i && position % boardSize < n) || |
||
87 | (position > i && position % boardSize > n))) || |
||
88 | position == i)) && |
||
0 ignored issues
–
show
|
|||
89 | // the position is not off-board |
||
90 | position >= 0 && |
||
91 | position < boardSize * boardSize && |
||
92 | // the cell is of the same type as the ones we are looking for |
||
93 | // or, we are checking the score for an empty cell, |
||
94 | // the current position is empty, |
||
95 | // or is "undefined" (meaning we didn't yet find any non-empty cells) |
||
96 | (board[position] == type || |
||
97 | (!board[i] && (!board[position] || undefined === type)) || |
||
98 | // or we're just checking the sides |
||
99 | !l || |
||
100 | l == 6) |
||
101 | ) { |
||
102 | // add position to the line |
||
103 | 56572 | line.push(position); |
|
104 | |||
105 | // if we're not just checking the sides, |
||
106 | // this is not an empty cell, and is of the same type as |
||
107 | // the ones we're looking for, |
||
108 | // update the type of cells we're looking for |
||
109 | // (we use ^ instead of !=) |
||
110 | 56572 | if (l && l ^ 6 && undefined === type && board[position]) { |
|
111 | 1118 | type = board[position]; |
|
112 | } |
||
113 | |||
114 | // if the computed position is off-board, |
||
115 | // but this is a side - cell, save it as "undefined" |
||
116 | 16556 | } else if (!l || l == 6) { |
|
117 | 6532 | line.push(undefined); |
|
118 | } else { |
||
119 | // skip the rest of the test if we found this row to be "non-compliant" |
||
120 | // (a different type of cell than the ones we're looking for, |
||
121 | // one of the 5 cells is off - board) |
||
122 | 10024 | break; |
|
123 | } |
||
124 | } |
||
125 | |||
126 | // if we added exactly 7 position to our line, and |
||
127 | // the line is not containing * only * empty cells |
||
128 | 15680 | if (line.length == 7 && undefined !== type) { |
|
129 | // if we are checking whether the player won, |
||
130 | // set this flag so that later on we do not |
||
131 | // overwrite the value of the cell |
||
132 | 1326 | m = board[i] ? true : false; |
|
133 | |||
134 | // calculate the score when setting the current cell to |
||
135 | // the same type as the other ones we found |
||
136 | 1326 | board[i] = type; |
|
137 | |||
138 | // calculate the number of consecutive cells we get like this |
||
139 | // (we'll do this by looking in our "line" array) |
||
140 | 1326 | consecutiveCells = 0; |
|
141 | 1326 | totalCells = 0; |
|
142 | 1326 | emptySides = 0; |
|
143 | |||
144 | // the total number of cells of the same type |
||
145 | 1326 | for (l = 5; l--; ) { |
|
146 | 6630 | if (board[line[l + 1]] == type) { |
|
147 | 4570 | totalCells++; |
|
148 | } |
||
149 | } |
||
150 | |||
151 | // look to the left of the current cell |
||
152 | 1326 | for ( |
|
153 | l = line.indexOf(i) - 1; |
||
154 | l >= 0; |
||
155 | // if the cell is of the same type, |
||
156 | //increment the number of consecutive cells |
||
157 | l-- |
||
158 | ) { |
||
159 | 1528 | if (board[line[l]] == type) { |
|
160 | 718 | consecutiveCells++; |
|
161 | } else { |
||
162 | // otherwise |
||
163 | // if the adjacent cell is empty, increment the number of empty sides |
||
164 | // we have to use === 0 (instead of !) because it |
||
165 | // can also be "undefined" |
||
166 | 810 | if (board[line[l]] === 0) { |
|
167 | 646 | emptySides++; |
|
168 | } |
||
169 | |||
170 | // don't look further |
||
171 | 810 | break; |
|
172 | } |
||
173 | } |
||
174 | |||
175 | // look to the right of the current cell |
||
176 | 1326 | for ( |
|
177 | l = line.indexOf(i); |
||
178 | l < line.length; |
||
179 | // if the cell is of the same type, |
||
180 | // increment the number of consecutive cells |
||
181 | l++ |
||
182 | ) { |
||
183 | 5194 | if (board[line[l]] == type) { |
|
184 | 4370 | consecutiveCells++; |
|
185 | } else { |
||
186 | // otherwise |
||
187 | // if the adjacent cell is empty, increment the number of empty sides |
||
188 | // we have to use === 0 (instead of !) |
||
189 | // because it can also be "undefined" |
||
190 | 824 | if (board[line[l]] === 0) { |
|
191 | 652 | emptySides++; |
|
192 | } |
||
193 | |||
194 | // don't look further |
||
195 | 824 | break; |
|
196 | } |
||
197 | } |
||
198 | |||
199 | // give a score to the row based on the |
||
200 | // array below(number of cells / empty sides) |
||
201 | 1326 | score = [[0, 1], [2, 3], [4, 12], [10, 64], [256, 256]][ |
|
202 | consecutiveCells >= totalCells |
||
203 | ? Math.min(consecutiveCells, 5) - 1 |
||
204 | : totalCells - 1 |
||
205 | ][consecutiveCells >= totalCells ? (emptySides ? emptySides - 1 : 0) : 0]; |
||
206 | |||
207 | // reset the cell's value (unless we are looking to see if the player won) |
||
208 | 1326 | if (!m) { |
|
209 | 734 | board[i] = 0; |
|
210 | } |
||
211 | // } else if (score >= 256) { |
||
212 | // // if the player won, update the score |
||
213 | // score = 1024; |
||
214 | // } |
||
215 | |||
216 | // if, so far, this is the best |
||
217 | // attack / defense score(depending on the value of "type") |
||
218 | // for this direction, update it |
||
219 | 1326 | if (score > directionScore[type - 1]) { |
|
220 | 1016 | directionScore[type - 1] = score; |
|
221 | } |
||
222 | } |
||
223 | } |
||
224 | |||
225 | // update the cell's attack and defense score |
||
226 | // (we simply sum the best scores of all 4 directions) |
||
227 | 6400 | for (k = 2; k--; ) { |
|
228 | 12800 | cellScore[k] += directionScore[k]; |
|
229 | } |
||
230 | } |
||
231 | |||
232 | // used below |
||
233 | 1600 | j = cellScore[0] + cellScore[1]; |
|
234 | 1600 | k = bestScore[1] + bestScore[2]; |
|
235 | |||
236 | // if cell's attack + defense score is better than |
||
237 | // the current best attack and defense score |
||
238 | // or, cell's score is equal to the best score, |
||
239 | // but computer's move is better or equal to the player's, |
||
240 | // and the current best move is not *exactly* the same |
||
241 | 1600 | if ( |
|
242 | (j > k || (j == k && cellScore[0] >= bestScore[1])) && |
||
243 | // we're checking the score of an empty cell, |
||
244 | // or we're checking to see if the player won and he won |
||
245 | // (we don't update the score when checking if the |
||
246 | // player won * unless * the player actually won) |
||
247 | (!board[i] || cellScore[1] >= 1024) |
||
248 | |||
249 | // update best score (position, attack, defense) |
||
250 | ) { |
||
251 | 234 | bestScore = [i, cellScore[0], cellScore[1]]; |
|
252 | } |
||
253 | } |
||
254 | |||
255 | // Calculation done return x, y |
||
256 | var x, y; |
||
257 | |||
258 | 16 | y = Math.floor(bestScore[0] / boardSize); |
|
259 | 16 | x = bestScore[0] % boardSize; |
|
260 | |||
261 | 16 | return { x: x, y: y }; |
|
262 | } |
||
263 | |||
264 | function getRandomIntInclusive(min, max) { |
||
265 | 4 | return Math.floor(Math.random() * (max - min + 1)) + min; |
|
266 | } |
||
267 | |||
268 | // randomMove :: ([Mark], Size) -> Position |
||
269 | // Mark = 0 | 1 | 2 |
||
270 | // Size = Integer |
||
271 | // Position = { x: Integer, y: Integer } |
||
272 | function randomMove(board, boardSize) { |
||
273 | 6 | if ( |
|
274 | board.every(function(x) { |
||
275 | 402 | return x !== 0; |
|
276 | }) |
||
277 | ) { |
||
278 | 4 | return null; |
|
279 | } |
||
280 | var x, y; |
||
281 | |||
282 | 2 | do { |
|
283 | 2 | x = getRandomIntInclusive(0, boardSize); |
|
284 | 2 | y = getRandomIntInclusive(0, boardSize); |
|
285 | } while (board[x + y * boardSize] !== 0); |
||
286 | |||
287 | 2 | return { x: x, y: y }; |
|
288 | } |
||
289 | |||
290 | // bestMove :: ([Mark], Size) -> Position |
||
291 | // Mark = 0 | 1 | 2 |
||
292 | // Size = Integer |
||
293 | // Position = { x: Integer, y: Integer } |
||
294 | function bestMove(board, boardSize) { |
||
295 | 16 | var pos = nextBestMove(board, boardSize); |
|
296 | |||
297 | // On occasion the algoritm calcs a position that is already taken |
||
298 | // Catch that and randomize something. |
||
299 | 16 | if (board[pos.x + pos.y * boardSize] !== 0) { |
|
300 | 2 | pos = randomMove(board, boardSize); |
|
301 | } |
||
302 | |||
303 | 16 | return pos; |
|
304 | } |
||
305 | |||
306 | module.exports = { bestMove: bestMove, randomMove: randomMove }; |
||
307 |