|
1
|
|
|
"""Module Graph of kytos/pathfinder Kytos Network Application.""" |
|
2
|
|
|
|
|
3
|
1 |
|
from itertools import combinations |
|
4
|
|
|
|
|
5
|
1 |
|
from kytos.core import log |
|
6
|
|
|
|
|
7
|
1 |
|
try: |
|
8
|
1 |
|
import networkx as nx |
|
9
|
1 |
|
from networkx.exception import NodeNotFound, NetworkXNoPath |
|
10
|
|
|
except ImportError: |
|
11
|
|
|
PACKAGE = 'networkx>=2.2' |
|
12
|
|
|
log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
1 |
|
class Filter: |
|
16
|
|
|
"""Class responsible for removing items with disqualifying values.""" |
|
17
|
|
|
|
|
18
|
1 |
|
def __init__(self, filter_type, filter_function): |
|
19
|
1 |
|
self._filter_type = filter_type |
|
20
|
1 |
|
self._filter_function = filter_function |
|
21
|
|
|
|
|
22
|
1 |
|
def run(self, value, items): |
|
23
|
|
|
"""Filter out items. Filter chosen is picked at runtime.""" |
|
24
|
1 |
|
if isinstance(value, self._filter_type): |
|
25
|
1 |
|
return filter(self._filter_function(value), items) |
|
26
|
|
|
|
|
27
|
1 |
|
raise TypeError(f"Expected type: {self._filter_type}") |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
1 |
|
class KytosGraph: |
|
31
|
|
|
"""Class responsible for the graph generation.""" |
|
32
|
|
|
|
|
33
|
1 |
|
def __init__(self): |
|
34
|
1 |
|
self.graph = nx.Graph() |
|
35
|
1 |
|
self._filter_functions = {} |
|
36
|
|
|
|
|
37
|
1 |
|
def filter_leq(metric): # Lower values are better |
|
38
|
1 |
|
return lambda x: (lambda y: y[2].get(metric, x) <= x) |
|
|
|
|
|
|
39
|
|
|
|
|
40
|
1 |
|
def filter_geq(metric): # Higher values are better |
|
41
|
1 |
|
return lambda x: (lambda y: y[2].get(metric, x) >= x) |
|
|
|
|
|
|
42
|
|
|
|
|
43
|
1 |
|
def filter_eeq(metric): # Equivalence |
|
44
|
1 |
|
return lambda x: (lambda y: y[2].get(metric, x) == x) |
|
|
|
|
|
|
45
|
|
|
|
|
46
|
1 |
|
self._filter_functions["ownership"] = Filter( |
|
47
|
|
|
str, filter_eeq("ownership")) |
|
48
|
1 |
|
self._filter_functions["bandwidth"] = Filter( |
|
49
|
|
|
(int, float), filter_geq("bandwidth")) |
|
50
|
1 |
|
self._filter_functions["priority"] = Filter( |
|
51
|
|
|
(int, float), filter_geq("priority")) |
|
52
|
1 |
|
self._filter_functions["reliability"] = Filter( |
|
53
|
|
|
(int, float), filter_geq("reliability")) |
|
54
|
1 |
|
self._filter_functions["utilization"] = Filter( |
|
55
|
|
|
(int, float), filter_leq("utilization")) |
|
56
|
1 |
|
self._filter_functions["delay"] = Filter( |
|
57
|
|
|
(int, float), filter_leq("delay")) |
|
58
|
1 |
|
self._path_function = nx.all_shortest_paths |
|
59
|
|
|
|
|
60
|
1 |
|
def clear(self): |
|
61
|
|
|
"""Remove all nodes and links registered.""" |
|
62
|
1 |
|
self.graph.clear() |
|
63
|
|
|
|
|
64
|
1 |
|
def update_topology(self, topology): |
|
65
|
|
|
"""Update all nodes and links inside the graph.""" |
|
66
|
1 |
|
self.graph.clear() |
|
67
|
1 |
|
self.update_nodes(topology.switches) |
|
68
|
1 |
|
self.update_links(topology.links) |
|
69
|
|
|
|
|
70
|
1 |
|
def update_nodes(self, nodes): |
|
71
|
|
|
"""Update all nodes inside the graph.""" |
|
72
|
1 |
|
for node in nodes.values(): |
|
73
|
1 |
|
try: |
|
74
|
1 |
|
self.graph.add_node(node.id) |
|
75
|
|
|
|
|
76
|
1 |
|
for interface in node.interfaces.values(): |
|
77
|
1 |
|
self.graph.add_node(interface.id) |
|
78
|
1 |
|
self.graph.add_edge(node.id, interface.id) |
|
79
|
|
|
|
|
80
|
|
|
except AttributeError: |
|
81
|
|
|
pass |
|
82
|
|
|
|
|
83
|
1 |
|
def update_links(self, links): |
|
84
|
|
|
"""Update all links inside the graph.""" |
|
85
|
1 |
|
keys = [] |
|
86
|
1 |
|
for link in links.values(): |
|
87
|
1 |
|
if link.is_active(): |
|
88
|
1 |
|
self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
|
89
|
1 |
|
for key, value in link.metadata.items(): |
|
90
|
1 |
|
keys.append(key) |
|
91
|
1 |
|
endpoint_a = link.endpoint_a.id |
|
92
|
1 |
|
endpoint_b = link.endpoint_b.id |
|
93
|
1 |
|
self.graph[endpoint_a][endpoint_b][key] = value |
|
94
|
|
|
|
|
95
|
1 |
|
self._set_default_metadata(keys) |
|
96
|
|
|
|
|
97
|
1 |
|
def _set_default_metadata(self, keys): |
|
98
|
|
|
"""Set metadata to all links. |
|
99
|
|
|
|
|
100
|
|
|
Set the value to zero for inexistent metadata in a link to make those |
|
101
|
|
|
irrelevant in pathfinding. |
|
102
|
|
|
""" |
|
103
|
1 |
|
for key in keys: |
|
104
|
1 |
|
for endpoint_a, endpoint_b in self.graph.edges: |
|
105
|
1 |
|
if key not in self.graph[endpoint_a][endpoint_b]: |
|
106
|
1 |
|
self.graph[endpoint_a][endpoint_b][key] = 0 |
|
107
|
|
|
|
|
108
|
1 |
|
def get_metadata_from_link(self, endpoint_a, endpoint_b): |
|
109
|
|
|
"""Return the metadata of a link.""" |
|
110
|
1 |
|
return self.graph.edges[endpoint_a, endpoint_b] |
|
111
|
|
|
|
|
112
|
1 |
|
@staticmethod |
|
113
|
|
|
def _remove_switch_hops(circuit): |
|
114
|
|
|
"""Remove switch hops from a circuit hops list.""" |
|
115
|
1 |
|
for hop in circuit['hops']: |
|
116
|
1 |
|
if len(hop.split(':')) == 8: |
|
117
|
1 |
|
circuit['hops'].remove(hop) |
|
118
|
|
|
|
|
119
|
1 |
|
def shortest_paths(self, source, destination, parameter=None): |
|
120
|
|
|
"""Calculate the shortest paths and return them.""" |
|
121
|
1 |
|
try: |
|
122
|
1 |
|
paths = list(nx.shortest_simple_paths(self.graph, |
|
123
|
|
|
source, destination, |
|
124
|
|
|
parameter)) |
|
125
|
|
|
except (NodeNotFound, NetworkXNoPath): |
|
126
|
|
|
return [] |
|
127
|
1 |
|
return paths |
|
128
|
|
|
|
|
129
|
1 |
|
def constrained_flexible_paths(self, source, destination, |
|
130
|
|
|
maximum_misses=None, **metrics): |
|
131
|
|
|
"""Calculate the constrained shortest paths with flexibility.""" |
|
132
|
1 |
|
base = metrics.get("base", {}) |
|
133
|
1 |
|
flexible = metrics.get("flexible", {}) |
|
134
|
1 |
|
default_edge_list = list(self._filter_edges( |
|
135
|
|
|
self.graph.edges(data=True), **base)) |
|
136
|
1 |
|
length = len(flexible) |
|
137
|
1 |
|
if maximum_misses is None: |
|
138
|
1 |
|
maximum_misses = length |
|
139
|
1 |
|
maximum_misses = min(length, max(0, maximum_misses)) |
|
140
|
1 |
|
results = [] |
|
141
|
1 |
|
paths = [] |
|
142
|
1 |
|
i = 0 |
|
143
|
1 |
|
while (paths == [] and i in range(0, maximum_misses+1)): |
|
144
|
1 |
|
for combo in combinations(flexible.items(), length-i): |
|
145
|
1 |
|
additional = dict(combo) |
|
146
|
1 |
|
paths = self._constrained_shortest_paths( |
|
147
|
|
|
source, destination, ((u, v) for u, v, d in |
|
|
|
|
|
|
148
|
|
|
self._filter_edges(default_edge_list, |
|
149
|
|
|
**additional))) |
|
150
|
1 |
|
if paths != []: |
|
151
|
1 |
|
results.append( |
|
152
|
|
|
{"paths": paths, "metrics": {**base, **additional}}) |
|
153
|
1 |
|
i = i + 1 |
|
154
|
1 |
|
return results |
|
155
|
|
|
|
|
156
|
1 |
|
def _constrained_shortest_paths(self, source, destination, edges): |
|
157
|
1 |
|
paths = [] |
|
158
|
1 |
|
try: |
|
159
|
1 |
|
paths = list(self._path_function(self.graph.edge_subgraph(edges), |
|
160
|
|
|
source, destination)) |
|
161
|
1 |
|
except NetworkXNoPath: |
|
162
|
1 |
|
pass |
|
163
|
1 |
|
except NodeNotFound: |
|
164
|
1 |
|
if source == destination: |
|
165
|
1 |
|
if source in self.graph.nodes: |
|
166
|
1 |
|
paths = [[source]] |
|
167
|
1 |
|
return paths |
|
168
|
|
|
|
|
169
|
1 |
|
def _filter_edges(self, edges, **metrics): |
|
170
|
1 |
|
for metric, value in metrics.items(): |
|
171
|
1 |
|
filter_ = self._filter_functions.get(metric, None) |
|
172
|
1 |
|
if filter_ is not None: |
|
173
|
1 |
|
try: |
|
174
|
1 |
|
edges = filter_.run(value, edges) |
|
175
|
1 |
|
except TypeError as err: |
|
176
|
1 |
|
raise TypeError(f"Error in {metric} value: {err}") |
|
177
|
|
|
return edges |
|
178
|
|
|
|