1
|
|
|
"""Module Graph of kytos/pathfinder Kytos Network Application.""" |
2
|
|
|
|
3
|
1 |
|
from kytos.core import log |
4
|
|
|
|
5
|
1 |
|
try: |
6
|
1 |
|
import networkx as nx |
7
|
1 |
|
from networkx.exception import NodeNotFound, NetworkXNoPath |
8
|
|
|
except ImportError: |
9
|
|
|
PACKAGE = 'networkx>=2.2' |
10
|
|
|
log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
11
|
|
|
|
12
|
|
|
from itertools import combinations |
13
|
1 |
|
|
14
|
|
|
class Filter: |
15
|
|
|
'''Class responsible for removing items with disqualifying values''' |
16
|
1 |
|
def __init__(self, filter_type, filter_function): |
17
|
1 |
|
self._filter_type = filter_type |
18
|
|
|
self._filter_fun = filter_function |
19
|
1 |
|
|
20
|
|
|
def run(self,value, items): |
21
|
1 |
|
if isinstance(value, self._filter_type): |
22
|
|
|
return filter(self._filter_fun(value), items) |
23
|
1 |
|
else: |
24
|
|
|
raise TypeError(f"Expected type: {self._filter_type}") |
25
|
1 |
|
|
26
|
1 |
|
class KytosGraph: |
27
|
1 |
|
"""Class responsible for the graph generation.""" |
28
|
|
|
def __init__(self): |
29
|
1 |
|
self.graph = nx.Graph() |
30
|
|
|
self._filter_fun_dict = {} |
31
|
1 |
|
def filterLEQ(metric):# Lower values are better |
32
|
1 |
|
return lambda x: (lambda y: y[2].get(metric,x) <= x) |
|
|
|
|
33
|
1 |
|
def filterGEQ(metric):# Higher values are better |
34
|
|
|
return lambda x: (lambda y: y[2].get(metric,x) >= x) |
|
|
|
|
35
|
1 |
|
def filterEEQ(metric):# Equivalence |
36
|
1 |
|
return lambda x: (lambda y: y[2].get(metric,x) == x) |
|
|
|
|
37
|
1 |
|
|
38
|
|
|
self._filter_fun_dict["ownership"] = Filter(str,filterEEQ("ownership")) |
39
|
|
|
self._filter_fun_dict["bandwidth"] = Filter((int,float),filterGEQ("bandwidth")) |
40
|
|
|
self._filter_fun_dict["priority"] = Filter((int,float),filterGEQ("priority")) |
41
|
|
|
self._filter_fun_dict["reliability"] = Filter((int,float),filterGEQ("reliability")) |
42
|
1 |
|
self._filter_fun_dict["utilization"] = Filter((int,float),filterLEQ("utilization")) |
43
|
|
|
self._filter_fun_dict["delay"] = Filter((int,float),filterLEQ("delay")) |
44
|
1 |
|
self._path_fun = nx.all_shortest_paths |
45
|
1 |
|
|
46
|
1 |
|
def set_path_fun(self, path_fun): |
47
|
1 |
|
self._path_fun = path_fun |
48
|
1 |
|
|
49
|
1 |
|
def clear(self): |
50
|
1 |
|
"""Remove all nodes and links registered.""" |
51
|
1 |
|
self.graph.clear() |
52
|
1 |
|
|
53
|
|
|
def update_topology(self, topology): |
54
|
1 |
|
"""Update all nodes and links inside the graph.""" |
55
|
|
|
self.graph.clear() |
56
|
1 |
|
self.update_nodes(topology.switches) |
57
|
|
|
self.update_links(topology.links) |
58
|
|
|
|
59
|
|
|
def update_nodes(self, nodes): |
60
|
|
|
"""Update all nodes inside the graph.""" |
61
|
|
|
for node in nodes.values(): |
62
|
1 |
|
try: |
63
|
1 |
|
self.graph.add_node(node.id) |
64
|
1 |
|
|
65
|
1 |
|
for interface in node.interfaces.values(): |
66
|
|
|
self.graph.add_node(interface.id) |
67
|
1 |
|
self.graph.add_edge(node.id, interface.id) |
68
|
|
|
|
69
|
|
|
except AttributeError: |
70
|
1 |
|
pass |
71
|
1 |
|
|
72
|
1 |
|
def update_links(self, links): |
73
|
|
|
"""Update all links inside the graph.""" |
74
|
1 |
|
keys = [] |
75
|
|
|
for link in links.values(): |
76
|
1 |
|
if link.is_active(): |
77
|
1 |
|
self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
78
|
|
|
for key, value in link.metadata.items(): |
79
|
|
|
keys.append(key) |
80
|
|
|
endpoint_a = link.endpoint_a.id |
81
|
|
|
endpoint_b = link.endpoint_b.id |
82
|
1 |
|
self.graph[endpoint_a][endpoint_b][key] = value |
83
|
|
|
|
84
|
|
|
def get_metadata_from_link(self, endpoint_a, endpoint_b): |
85
|
|
|
"""Return the metadata of a link.""" |
86
|
|
|
return self.graph.edges[endpoint_a, endpoint_b] |
87
|
|
|
|
88
|
|
|
@staticmethod |
89
|
|
|
def _remove_switch_hops(circuit): |
90
|
|
|
"""Remove switch hops from a circuit hops list.""" |
91
|
|
|
for hop in circuit['hops']: |
92
|
|
|
if len(hop.split(':')) == 8: |
93
|
|
|
circuit['hops'].remove(hop) |
94
|
|
|
|
95
|
|
|
def shortest_paths(self, source, destination, parameter=None): |
96
|
|
|
"""Calculate the shortest paths and return them.""" |
97
|
|
|
try: |
98
|
|
|
paths = list(self._path_fun(self.graph, |
99
|
|
|
source, destination, parameter)) |
100
|
|
|
except (NodeNotFound, NetworkXNoPath): |
101
|
|
|
return [] |
102
|
|
|
return paths |
103
|
|
|
|
104
|
|
|
def constrained_flexible_paths(self, source, destination, metrics, flexible_metrics, \ |
105
|
|
|
flexible = None): |
106
|
|
|
'''Calculate the constrained shortest paths with flexibility and return them.''' |
107
|
|
|
default_edge_list = list(self._filter_edges(self.graph.edges(data=True),**metrics)) |
108
|
|
|
length = len(flexible_metrics) |
109
|
|
|
if flexible is None: |
110
|
|
|
flexible = length |
111
|
|
|
flexible = min(length,max(0,flexible)) |
112
|
|
|
results = [] |
113
|
|
|
stop = False |
114
|
|
|
i = 0 |
115
|
|
|
|
116
|
|
|
while (not stop and i in range(0, flexible+1)): |
117
|
|
|
combos = combinations(flexible_metrics.items(),length-i) |
118
|
|
|
for combo in combos: |
119
|
|
|
tempDict = {} |
120
|
|
|
for metric,value in combo: |
121
|
|
|
tempDict[metric] = value |
122
|
|
|
edges = self._filter_edges(default_edge_list,**tempDict) |
123
|
|
|
edges = ((u,v) for u,v,d in edges) |
|
|
|
|
124
|
|
|
result = self._constrained_shortest_paths(source,destination,edges) |
125
|
|
|
if result != []: |
126
|
|
|
results.append({"paths":result, "metrics":{**metrics,**tempDict}}) |
127
|
|
|
stop = True |
128
|
|
|
i = i + 1 |
129
|
|
|
return results |
130
|
|
|
|
131
|
|
|
def _constrained_shortest_paths(self, source, destination, edges): |
132
|
|
|
paths = [] |
133
|
|
|
try: |
134
|
|
|
paths = list(self._path_fun(self.graph.edge_subgraph(edges), |
135
|
|
|
source, destination)) |
136
|
|
|
except NetworkXNoPath: |
137
|
|
|
pass |
138
|
|
|
except NodeNotFound: |
139
|
|
|
if source == destination: |
140
|
|
|
if source in self.graph.nodes: |
141
|
|
|
paths = [[source]] |
142
|
|
|
return paths |
143
|
|
|
|
144
|
|
|
def _filter_edges(self, edges, **metrics): |
145
|
|
|
for metric, value in metrics.items(): |
146
|
|
|
fil = self._filter_fun_dict.get(metric, None) |
147
|
|
|
if fil != None: |
148
|
|
|
try: |
149
|
|
|
edges = fil.run(value,edges) |
150
|
|
|
except TypeError as err: |
151
|
|
|
raise TypeError(f"Error in {metric} filter: {err}") |
152
|
|
|
return edges |
153
|
|
|
|