1
|
|
|
"""Module Graph of kytos/pathfinder Kytos Network Application.""" |
2
|
|
|
|
3
|
1 |
|
# pylint: disable=too-many-arguments,too-many-locals |
4
|
|
|
from itertools import combinations, islice |
5
|
1 |
|
|
6
|
1 |
|
from kytos.core import log |
7
|
1 |
|
from kytos.core.common import EntityStatus |
8
|
|
|
from napps.kytos.pathfinder.utils import (filter_ge, filter_in, filter_le, |
9
|
|
|
lazy_filter, nx_edge_data_delay, |
10
|
|
|
nx_edge_data_priority, |
11
|
|
|
nx_edge_data_weight) |
12
|
|
|
|
13
|
1 |
|
try: |
14
|
|
|
import networkx as nx |
15
|
|
|
from networkx.exception import NetworkXNoPath, NodeNotFound |
16
|
1 |
|
except ImportError: |
17
|
1 |
|
PACKAGE = "networkx==2.5.1" |
18
|
|
|
log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
19
|
1 |
|
|
20
|
|
|
|
21
|
1 |
|
class KytosGraph: |
22
|
|
|
"""Class responsible for the graph generation.""" |
23
|
1 |
|
|
24
|
|
|
def __init__(self): |
25
|
1 |
|
self.graph = nx.Graph() |
26
|
1 |
|
self._filter_functions = { |
27
|
1 |
|
"ownership": lazy_filter(str, filter_in("ownership")), |
28
|
|
|
"bandwidth": lazy_filter((int, float), filter_ge("bandwidth")), |
29
|
1 |
|
"reliability": lazy_filter((int, float), filter_ge("reliability")), |
30
|
|
|
"priority": lazy_filter((int, float), filter_le("priority")), |
31
|
1 |
|
"utilization": lazy_filter((int, float), filter_le("utilization")), |
32
|
1 |
|
"delay": lazy_filter((int, float), filter_le("delay")), |
33
|
1 |
|
} |
34
|
|
|
self.spf_edge_data_cbs = { |
35
|
1 |
|
"hop": nx_edge_data_weight, |
36
|
1 |
|
"delay": nx_edge_data_delay, |
37
|
1 |
|
"priority": nx_edge_data_priority, |
38
|
|
|
} |
39
|
|
|
|
40
|
|
|
def clear(self): |
41
|
|
|
"""Remove all nodes and links registered.""" |
42
|
1 |
|
self.graph.clear() |
43
|
|
|
|
44
|
1 |
|
def update_topology(self, topology): |
45
|
1 |
|
"""Update all nodes and links inside the graph.""" |
46
|
1 |
|
self.graph.clear() |
47
|
1 |
|
self.update_nodes(topology.switches) |
48
|
1 |
|
self.update_links(topology.links) |
49
|
1 |
|
|
50
|
1 |
|
def update_nodes(self, nodes): |
51
|
1 |
|
"""Update all nodes inside the graph.""" |
52
|
1 |
|
for node in nodes.values(): |
53
|
|
|
try: |
54
|
1 |
|
if node.status != EntityStatus.UP: |
55
|
|
|
continue |
56
|
1 |
|
self.graph.add_node(node.id) |
57
|
|
|
|
58
|
|
|
for interface in node.interfaces.values(): |
59
|
|
|
if interface.status == EntityStatus.UP: |
60
|
|
|
self.graph.add_node(interface.id) |
61
|
|
|
self.graph.add_edge(node.id, interface.id) |
62
|
1 |
|
|
63
|
1 |
|
except AttributeError as err: |
64
|
1 |
|
raise TypeError( |
65
|
1 |
|
f"Error when updating nodes inside the graph: {str(err)}" |
66
|
|
|
) |
67
|
1 |
|
|
68
|
|
|
def update_links(self, links): |
69
|
|
|
"""Update all links inside the graph.""" |
70
|
1 |
|
for link in links.values(): |
71
|
1 |
|
if link.status == EntityStatus.UP: |
72
|
1 |
|
self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
73
|
|
|
self.update_link_metadata(link) |
74
|
1 |
|
|
75
|
|
|
def update_link_metadata(self, link): |
76
|
1 |
|
"""Update link metadata.""" |
77
|
1 |
|
for key, value in link.metadata.items(): |
78
|
|
|
if key not in self._filter_functions: |
79
|
|
|
continue |
80
|
|
|
endpoint_a = link.endpoint_a.id |
81
|
|
|
endpoint_b = link.endpoint_b.id |
82
|
1 |
|
self.graph[endpoint_a][endpoint_b][key] = value |
83
|
|
|
|
84
|
|
|
def get_link_metadata(self, endpoint_a, endpoint_b): |
85
|
|
|
"""Return the metadata of a link.""" |
86
|
|
|
return self.graph.get_edge_data(endpoint_a, endpoint_b) |
87
|
|
|
|
88
|
|
|
@staticmethod |
89
|
|
|
def _remove_switch_hops(circuit): |
90
|
|
|
"""Remove switch hops from a circuit hops list.""" |
91
|
|
|
for hop in circuit["hops"]: |
92
|
|
|
if len(hop.split(":")) == 8: |
93
|
|
|
circuit["hops"].remove(hop) |
94
|
|
|
|
95
|
|
|
def _path_cost(self, path, weight="hop", default_cost=1): |
96
|
|
|
"""Compute the path cost given an attribute.""" |
97
|
|
|
cost = 0 |
98
|
|
|
for node, nbr in nx.utils.pairwise(path): |
99
|
|
|
cost += self.graph[node][nbr].get(weight, default_cost) |
100
|
|
|
return cost |
101
|
|
|
|
102
|
|
|
def path_cost_builder(self, paths, weight="hop", default_weight=1): |
103
|
|
|
"""Build the cost of a path given a list of paths.""" |
104
|
|
|
paths_acc = [] |
105
|
|
|
for path in paths: |
106
|
|
|
if isinstance(path, list): |
107
|
|
|
paths_acc.append( |
108
|
|
|
{ |
109
|
|
|
"hops": path, |
110
|
|
|
"cost": self._path_cost( |
111
|
|
|
path, weight=weight, default_cost=default_weight |
112
|
|
|
), |
113
|
|
|
} |
114
|
|
|
) |
115
|
|
|
elif isinstance(path, dict): |
116
|
|
|
path["cost"] = self._path_cost( |
117
|
|
|
path["hops"], weight=weight, default_cost=default_weight |
118
|
|
|
) |
119
|
|
|
paths_acc.append(path) |
120
|
|
|
else: |
121
|
|
|
raise TypeError( |
122
|
|
|
f"type: '{type(path)}' must be be either list or dict. " |
123
|
|
|
f"path: {path}" |
124
|
|
|
) |
125
|
|
|
return paths_acc |
126
|
|
|
|
127
|
|
|
def k_shortest_paths( |
128
|
|
|
self, source, destination, weight=None, k=1, graph=None |
129
|
|
|
): |
130
|
|
|
""" |
131
|
|
|
Compute up to k shortest paths and return them. |
132
|
|
|
|
133
|
|
|
This procedure is based on algorithm by Jin Y. Yen [1]. |
134
|
|
|
Since Yen's algorithm calls Dijkstra's up to k times, the time |
135
|
|
|
complexity will be proportional to K * Dijkstra's, average |
136
|
|
|
O(K(|V| + |E|)logV), assuming it's using a heap, where V is the |
137
|
|
|
number of vertices and E number of egdes. |
138
|
|
|
|
139
|
|
|
References |
140
|
|
|
---------- |
141
|
|
|
.. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a |
142
|
|
|
Network", Management Science, Vol. 17, No. 11, Theory Series |
143
|
|
|
(Jul., 1971), pp. 712-716. |
144
|
|
|
""" |
145
|
|
|
try: |
146
|
|
|
return list( |
147
|
|
|
islice( |
148
|
|
|
nx.shortest_simple_paths( |
149
|
|
|
graph or self.graph, |
150
|
|
|
source, |
151
|
|
|
destination, |
152
|
|
|
weight=weight, |
153
|
|
|
), |
154
|
|
|
k, |
155
|
|
|
) |
156
|
|
|
) |
157
|
|
|
except (NodeNotFound, NetworkXNoPath): |
158
|
|
|
return [] |
159
|
|
|
|
160
|
|
|
def constrained_k_shortest_paths( |
161
|
|
|
self, |
162
|
|
|
source, |
163
|
|
|
destination, |
164
|
|
|
weight=None, |
165
|
|
|
k=1, |
166
|
|
|
graph=None, |
167
|
|
|
minimum_hits=None, |
168
|
|
|
**metrics, |
169
|
|
|
): |
170
|
|
|
"""Calculate the constrained shortest paths with flexibility.""" |
171
|
|
|
graph = graph or self.graph |
172
|
|
|
mandatory_metrics = metrics.get("mandatory_metrics", {}) |
173
|
|
|
flexible_metrics = metrics.get("flexible_metrics", {}) |
174
|
|
|
first_pass_links = list( |
175
|
|
|
self._filter_links( |
176
|
|
|
graph.edges(data=True), **mandatory_metrics |
177
|
|
|
) |
178
|
|
|
) |
179
|
|
|
length = len(flexible_metrics) |
180
|
|
|
if minimum_hits is None: |
181
|
|
|
minimum_hits = 0 |
182
|
|
|
minimum_hits = min(length, max(0, minimum_hits)) |
183
|
|
|
|
184
|
|
|
paths = [] |
185
|
|
|
for i in range(length, minimum_hits - 1, -1): |
186
|
|
|
for combo in combinations(flexible_metrics.items(), i): |
187
|
|
|
additional = dict(combo) |
188
|
|
|
filtered_links = self._filter_links( |
189
|
|
|
first_pass_links, **additional |
190
|
|
|
) |
191
|
|
|
filtered_links = ((u, v) for u, v, d in filtered_links) |
|
|
|
|
192
|
|
|
for path in self.k_shortest_paths( |
193
|
|
|
source, |
194
|
|
|
destination, |
195
|
|
|
weight=weight, |
196
|
|
|
k=k, |
197
|
|
|
graph=graph.edge_subgraph(filtered_links), |
198
|
|
|
): |
199
|
|
|
paths.append( |
200
|
|
|
{ |
201
|
|
|
"hops": path, |
202
|
|
|
"metrics": {**mandatory_metrics, **additional}, |
203
|
|
|
} |
204
|
|
|
) |
205
|
|
|
if len(paths) == k: |
206
|
|
|
return paths |
207
|
|
|
if paths: |
208
|
|
|
return paths |
209
|
|
|
return paths |
210
|
|
|
|
211
|
|
|
def _filter_links(self, links, **metrics): |
212
|
|
|
for metric, value in metrics.items(): |
213
|
|
|
filter_func = self._filter_functions.get(metric, None) |
214
|
|
|
if filter_func is not None: |
215
|
|
|
try: |
216
|
|
|
links = filter_func(value, links) |
217
|
|
|
except TypeError as err: |
218
|
|
|
raise TypeError( |
219
|
|
|
f"Error in {metric} value: {value} err: {err}" |
220
|
|
|
) |
221
|
|
|
return links |
222
|
|
|
|