kytos /
pathfinder
| 1 | """Module Graph of kytos/pathfinder Kytos Network Application.""" |
||
| 2 | |||
| 3 | 1 | from itertools import combinations |
|
| 4 | |||
| 5 | 1 | from kytos.core import log |
|
| 6 | 1 | ||
| 7 | 1 | try: |
|
| 8 | import networkx as nx |
||
| 9 | from networkx.exception import NodeNotFound, NetworkXNoPath |
||
| 10 | except ImportError: |
||
| 11 | PACKAGE = 'networkx>=2.2' |
||
| 12 | log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
||
| 13 | 1 | try: |
|
| 14 | from exactdelaypathfinder.core import ExactDelayPathfinder |
||
| 15 | except ImportError: |
||
| 16 | 1 | PACKAGE = 'exactdelaypathfinder>=0.1.0' |
|
| 17 | 1 | log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
|
| 18 | |||
| 19 | 1 | ||
| 20 | class Filter: |
||
| 21 | 1 | """Class responsible for removing items with disqualifying values.""" |
|
| 22 | |||
| 23 | 1 | def __init__(self, filter_type, filter_function): |
|
| 24 | self._filter_type = filter_type |
||
| 25 | 1 | self._filter_function = filter_function |
|
| 26 | 1 | ||
| 27 | 1 | def run(self, value, items): |
|
| 28 | """Filter out items.""" |
||
| 29 | 1 | if isinstance(value, self._filter_type): |
|
| 30 | return filter(self._filter_function(value), items) |
||
| 31 | 1 | ||
| 32 | 1 | raise TypeError(f"Expected type: {self._filter_type}") |
|
| 33 | 1 | ||
| 34 | |||
| 35 | 1 | class KytosGraph: |
|
| 36 | 1 | """Class responsible for the graph generation.""" |
|
| 37 | 1 | ||
| 38 | def __init__(self): |
||
| 39 | self.graph = nx.Graph() |
||
| 40 | self._filter_functions = {} |
||
| 41 | |||
| 42 | 1 | def filter_leq(metric): # Lower values are better |
|
| 43 | return lambda x: (lambda y: y[2].get(metric, x) <= x) |
||
|
0 ignored issues
–
show
Comprehensibility
Best Practice
introduced
by
Loading history...
|
|||
| 44 | 1 | ||
| 45 | 1 | def filter_geq(metric): # Higher values are better |
|
| 46 | 1 | return lambda x: (lambda y: y[2].get(metric, x) >= x) |
|
|
0 ignored issues
–
show
Comprehensibility
Best Practice
introduced
by
|
|||
| 47 | 1 | ||
| 48 | 1 | def filter_eeq(metric): # Equivalence |
|
| 49 | 1 | return lambda x: (lambda y: y[2].get(metric, x) == x) |
|
|
0 ignored issues
–
show
Comprehensibility
Best Practice
introduced
by
|
|||
| 50 | 1 | ||
| 51 | 1 | self._filter_functions["ownership"] = Filter( |
|
| 52 | 1 | str, filter_eeq("ownership")) |
|
| 53 | |||
| 54 | 1 | self._filter_functions["bandwidth"] = Filter( |
|
| 55 | (int, float), filter_geq("bandwidth")) |
||
| 56 | 1 | ||
| 57 | self._filter_functions["priority"] = Filter( |
||
| 58 | (int, float), filter_geq("priority")) |
||
| 59 | |||
| 60 | self._filter_functions["reliability"] = Filter( |
||
| 61 | (int, float), filter_geq("reliability")) |
||
| 62 | 1 | ||
| 63 | 1 | self._filter_functions["utilization"] = Filter( |
|
| 64 | 1 | (int, float), filter_leq("utilization")) |
|
| 65 | 1 | ||
| 66 | self._filter_functions["delay"] = Filter( |
||
| 67 | 1 | (int, float), filter_leq("delay")) |
|
| 68 | |||
| 69 | self._path_function = nx.all_shortest_paths |
||
| 70 | 1 | ||
| 71 | 1 | def clear(self): |
|
| 72 | 1 | """ |
|
| 73 | Remove all nodes and links registered. |
||
| 74 | 1 | """ |
|
| 75 | self.graph.clear() |
||
| 76 | 1 | ||
| 77 | 1 | def update_topology(self, topology): |
|
| 78 | """Update all nodes and links inside the graph.""" |
||
| 79 | self.graph.clear() |
||
| 80 | self.update_nodes(topology.switches) |
||
| 81 | self.update_links(topology.links) |
||
| 82 | 1 | ||
| 83 | def update_nodes(self, nodes): |
||
| 84 | """Update all nodes inside the graph.""" |
||
| 85 | for node in nodes.values(): |
||
| 86 | try: |
||
| 87 | self.graph.add_node(node.id) |
||
| 88 | |||
| 89 | for interface in node.interfaces.values(): |
||
| 90 | self.graph.add_node(interface.id) |
||
| 91 | self.graph.add_edge(node.id, interface.id) |
||
| 92 | |||
| 93 | except AttributeError: |
||
| 94 | raise TypeError("Problems encountered updating nodes inside the graph") |
||
| 95 | |||
| 96 | def update_links(self, links): |
||
| 97 | """Update all links inside the graph.""" |
||
| 98 | keys = [] |
||
| 99 | for link in links.values(): |
||
| 100 | if link.is_active(): |
||
| 101 | self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
||
| 102 | for key, value in link.metadata.items(): |
||
| 103 | keys.append(key) if key not in keys else keys |
||
| 104 | endpoint_a = link.endpoint_a.id |
||
| 105 | endpoint_b = link.endpoint_b.id |
||
| 106 | self.graph[endpoint_a][endpoint_b][key] = value |
||
| 107 | |||
| 108 | # self._set_default_metadata(keys) # It creates errors during the path construction |
||
| 109 | |||
| 110 | # def _set_default_metadata(self, keys): |
||
| 111 | # """Set metadata to all links. |
||
| 112 | # |
||
| 113 | # Set the value to zero for inexistent metadata in a link to make those |
||
| 114 | # irrelevant in pathfinding. |
||
| 115 | # """ |
||
| 116 | # for key in keys: |
||
| 117 | # for endpoint_a, endpoint_b in self.graph.edges: |
||
| 118 | # if key not in self.graph[endpoint_a][endpoint_b]: |
||
| 119 | # self.graph[endpoint_a][endpoint_b][key] = 0 |
||
| 120 | |||
| 121 | def get_link_metadata(self, endpoint_a, endpoint_b): |
||
| 122 | """Return the metadata of a link.""" |
||
| 123 | return self.graph.get_edge_data(endpoint_a, endpoint_b) |
||
| 124 | |||
| 125 | @staticmethod |
||
| 126 | def _remove_switch_hops(circuit): |
||
| 127 | """Remove switch hops from a circuit hops list.""" |
||
| 128 | for hop in circuit['hops']: |
||
| 129 | if len(hop.split(':')) == 8: |
||
| 130 | circuit['hops'].remove(hop) |
||
| 131 | |||
| 132 | def shortest_paths(self, source, destination, parameter=None): |
||
| 133 | """Calculate the shortest paths and return them.""" |
||
| 134 | try: |
||
| 135 | paths = list(nx.shortest_simple_paths(self.graph, |
||
| 136 | source, destination, |
||
| 137 | parameter)) |
||
| 138 | except (NodeNotFound, NetworkXNoPath): |
||
| 139 | return [] |
||
| 140 | return paths |
||
| 141 | |||
| 142 | def exact_path(self, total_delay, source, destination): |
||
| 143 | """Obtain paths with total delays equal or close to the user's requirements. |
||
| 144 | |||
| 145 | This function utilizes the ExactDelayPathfinder |
||
| 146 | library developed by the AmLight team at FIU. |
||
| 147 | """ |
||
| 148 | pathfinder = ExactDelayPathfinder() |
||
| 149 | result = pathfinder.search(self.graph, total_delay, source, destination) |
||
| 150 | return result |
||
| 151 | |||
| 152 | def constrained_flexible_paths(self, source, destination, |
||
| 153 | minimum_hits=None, **metrics): |
||
| 154 | """Calculate the constrained shortest paths with flexibility.""" |
||
| 155 | base = metrics.get("base", {}) |
||
| 156 | flexible = metrics.get("flexible", {}) |
||
| 157 | first_pass_links = list(self._filter_links(self.graph.edges(data=True), |
||
| 158 | **base)) |
||
| 159 | length = len(flexible) |
||
| 160 | if minimum_hits is None: |
||
| 161 | minimum_hits = length |
||
| 162 | minimum_hits = min(length, max(0, minimum_hits)) |
||
| 163 | results = [] |
||
| 164 | paths = [] |
||
| 165 | i = 0 |
||
| 166 | while paths == [] and i in range(0, minimum_hits + 1): |
||
| 167 | for combo in combinations(flexible.items(), length - i): |
||
| 168 | additional = dict(combo) |
||
| 169 | paths = self._constrained_shortest_paths( |
||
| 170 | source, destination, |
||
| 171 | self._filter_links(first_pass_links, |
||
| 172 | metadata=False, **additional)) |
||
| 173 | if paths: |
||
| 174 | results.append( |
||
| 175 | {"paths": paths, "metrics": {**base, **additional}}) |
||
| 176 | i = i + 1 |
||
| 177 | return results |
||
| 178 | |||
| 179 | def _constrained_shortest_paths(self, source, destination, links): |
||
| 180 | paths = [] |
||
| 181 | try: |
||
| 182 | paths = list(self._path_function(self.graph.edge_subgraph(links), |
||
| 183 | source, destination)) |
||
| 184 | except NetworkXNoPath: |
||
| 185 | pass |
||
| 186 | except NodeNotFound: |
||
| 187 | if source == destination: |
||
| 188 | if source in self.graph.nodes: |
||
| 189 | paths = [[source]] |
||
| 190 | return paths |
||
| 191 | |||
| 192 | def _filter_links(self, links, metadata=True, **metrics): |
||
| 193 | for metric, value in metrics.items(): |
||
| 194 | filter_ = self._filter_functions.get(metric, None) |
||
| 195 | if filter_ is not None: |
||
| 196 | try: |
||
| 197 | links = filter_.run(value, links) |
||
| 198 | except TypeError as err: |
||
| 199 | raise TypeError(f"Error in {metric} value: {err}") |
||
| 200 | if not metadata: |
||
| 201 | links = ((u, v) for u, v, d in links) |
||
|
0 ignored issues
–
show
Comprehensibility
Best Practice
introduced
by
Comprehensibility
Best Practice
introduced
by
|
|||
| 202 | return links |
||
| 203 | |||
| 204 | def get_nodes(self): |
||
| 205 | return self.graph.nodes |
||
| 206 | |||
| 207 | def get_edges(self): |
||
| 208 | return self.graph.edges |
||
| 209 |