1 | """Module Graph of kytos/pathfinder Kytos Network Application.""" |
||
2 | |||
3 | # pylint: enable=too-many-arguments,too-many-locals |
||
4 | 1 | from itertools import combinations, islice |
|
5 | 1 | import operator |
|
6 | |||
7 | 1 | from kytos.core import log |
|
8 | 1 | from kytos.core.common import EntityStatus |
|
9 | |||
10 | 1 | from .filters import EdgeFilter, ProcessEdgeAttribute, TypeCheckPreprocessor, TypeDifferentiatedProcessor, UseDefaultIfNone, UseValIfNone |
|
11 | 1 | from .weights import (nx_edge_data_delay, nx_edge_data_priority, nx_edge_data_weight) |
|
12 | |||
13 | |||
14 | 1 | import networkx as nx |
|
15 | 1 | from networkx.exception import NetworkXNoPath, NodeNotFound |
|
16 | |||
17 | |||
18 | 1 | class KytosGraph: |
|
19 | """Class responsible for the graph generation.""" |
||
20 | |||
21 | 1 | def __init__(self): |
|
22 | 1 | self.graph = nx.Graph() |
|
23 | 1 | self._accepted_metadata = { |
|
24 | 'ownership', |
||
25 | 'bandwidth', |
||
26 | 'reliability', |
||
27 | 'priority', |
||
28 | 'utilization', |
||
29 | 'delay', |
||
30 | } |
||
31 | 1 | ownership_processor = ProcessEdgeAttribute( |
|
32 | 'ownership', |
||
33 | TypeDifferentiatedProcessor({ |
||
34 | str: lambda x: frozenset(x.split()), |
||
35 | dict: lambda x: frozenset(x.keys()), |
||
36 | list: lambda x: frozenset(x), |
||
37 | type(None): None |
||
38 | }) |
||
39 | ) |
||
40 | 1 | self._filter_functions = { |
|
41 | "ownership": EdgeFilter( |
||
42 | operator.contains, |
||
43 | UseValIfNone(ownership_processor) |
||
44 | ), |
||
45 | "not_ownership": EdgeFilter( |
||
46 | lambda a, b: not (a & b), |
||
47 | UseDefaultIfNone(ownership_processor, frozenset()), |
||
48 | TypeDifferentiatedProcessor({ |
||
49 | str: lambda val: frozenset(val.split(',')), |
||
50 | list: lambda val: frozenset(val) |
||
51 | }) |
||
52 | ), |
||
53 | "bandwidth": EdgeFilter( |
||
54 | operator.ge, |
||
55 | 'bandwidth' |
||
56 | ), |
||
57 | "reliability": EdgeFilter( |
||
58 | operator.ge, |
||
59 | 'reliability' |
||
60 | ), |
||
61 | "priority": EdgeFilter( |
||
62 | operator.le, |
||
63 | 'priority' |
||
64 | ), |
||
65 | "utilization": EdgeFilter( |
||
66 | operator.le, |
||
67 | 'utilization' |
||
68 | ), |
||
69 | "delay": EdgeFilter( |
||
70 | operator.le, |
||
71 | 'delay' |
||
72 | ), |
||
73 | } |
||
74 | 1 | self.spf_edge_data_cbs = { |
|
75 | "hop": nx_edge_data_weight, |
||
76 | "delay": nx_edge_data_delay, |
||
77 | "priority": nx_edge_data_priority, |
||
78 | } |
||
79 | |||
80 | 1 | def clear(self): |
|
81 | """Remove all nodes and links registered.""" |
||
82 | 1 | self.graph.clear() |
|
83 | |||
84 | 1 | def update_topology(self, topology): |
|
85 | """Update all nodes and links inside the graph.""" |
||
86 | 1 | self.graph.clear() |
|
87 | 1 | self.update_nodes(topology.switches.copy()) |
|
88 | 1 | self.update_links(topology.links.copy()) |
|
89 | |||
90 | 1 | def update_nodes(self, nodes): |
|
91 | """Update all nodes inside the graph.""" |
||
92 | 1 | for node in nodes.values(): |
|
93 | 1 | try: |
|
94 | 1 | if node.status != EntityStatus.UP: |
|
95 | 1 | continue |
|
96 | 1 | self.graph.add_node(node.id) |
|
97 | |||
98 | 1 | for interface in node.interfaces.copy().values(): |
|
99 | 1 | if interface.status == EntityStatus.UP: |
|
100 | 1 | self.graph.add_node(interface.id) |
|
101 | 1 | self.graph.add_edge(node.id, interface.id) |
|
102 | |||
103 | 1 | except AttributeError as err: |
|
104 | 1 | raise TypeError( |
|
105 | f"Error when updating nodes inside the graph: {str(err)}" |
||
106 | ) |
||
107 | |||
108 | 1 | def update_links(self, links): |
|
109 | """Update all links inside the graph.""" |
||
110 | 1 | for link in links.values(): |
|
111 | 1 | if link.status == EntityStatus.UP: |
|
112 | 1 | self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
|
113 | 1 | self.update_link_metadata(link) |
|
114 | |||
115 | 1 | def update_link_metadata(self, link): |
|
116 | """Update link metadata.""" |
||
117 | 1 | for key, value in link.metadata.copy().items(): |
|
118 | 1 | if key not in self._accepted_metadata: |
|
119 | 1 | continue |
|
120 | 1 | endpoint_a = link.endpoint_a.id |
|
121 | 1 | endpoint_b = link.endpoint_b.id |
|
122 | 1 | self.graph[endpoint_a][endpoint_b][key] = value |
|
123 | |||
124 | 1 | def get_link_metadata(self, endpoint_a, endpoint_b): |
|
125 | """Return the metadata of a link.""" |
||
126 | 1 | return self.graph.get_edge_data(endpoint_a, endpoint_b) |
|
127 | |||
128 | 1 | @staticmethod |
|
129 | 1 | def _remove_switch_hops(circuit): |
|
130 | """Remove switch hops from a circuit hops list.""" |
||
131 | 1 | for hop in circuit["hops"]: |
|
132 | 1 | if len(hop.split(":")) == 8: |
|
133 | 1 | circuit["hops"].remove(hop) |
|
134 | |||
135 | 1 | def _path_cost(self, path, weight="hop", default_cost=1): |
|
136 | """Compute the path cost given an attribute.""" |
||
137 | 1 | cost = 0 |
|
138 | 1 | for node, nbr in nx.utils.pairwise(path): |
|
139 | 1 | cost += self.graph[node][nbr].get(weight, default_cost) |
|
140 | 1 | return cost |
|
141 | |||
142 | 1 | def path_cost_builder(self, paths, weight="hop", default_weight=1): |
|
143 | """Build the cost of a path given a list of paths.""" |
||
144 | 1 | paths_acc = [] |
|
145 | 1 | for path in paths: |
|
146 | 1 | if isinstance(path, list): |
|
147 | 1 | paths_acc.append( |
|
148 | { |
||
149 | "hops": path, |
||
150 | "cost": self._path_cost( |
||
151 | path, weight=weight, default_cost=default_weight |
||
152 | ), |
||
153 | } |
||
154 | ) |
||
155 | 1 | elif isinstance(path, dict): |
|
156 | 1 | path["cost"] = self._path_cost( |
|
157 | path["hops"], weight=weight, default_cost=default_weight |
||
158 | ) |
||
159 | 1 | paths_acc.append(path) |
|
160 | else: |
||
161 | raise TypeError( |
||
162 | f"type: '{type(path)}' must be be either list or dict. " |
||
163 | f"path: {path}" |
||
164 | ) |
||
165 | 1 | return paths_acc |
|
166 | |||
167 | 1 | def k_shortest_paths( |
|
168 | self, source, destination, weight=None, k=1, graph=None |
||
169 | ): |
||
170 | """ |
||
171 | Compute up to k shortest paths and return them. |
||
172 | |||
173 | This procedure is based on algorithm by Jin Y. Yen [1]. |
||
174 | Since Yen's algorithm calls Dijkstra's up to k times, the time |
||
175 | complexity will be proportional to K * Dijkstra's, average |
||
176 | O(K(|V| + |E|)logV), assuming it's using a heap, where V is the |
||
177 | number of vertices and E number of egdes. |
||
178 | |||
179 | References |
||
180 | ---------- |
||
181 | .. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a |
||
182 | Network", Management Science, Vol. 17, No. 11, Theory Series |
||
183 | (Jul., 1971), pp. 712-716. |
||
184 | """ |
||
185 | 1 | try: |
|
186 | 1 | return list( |
|
187 | islice( |
||
188 | nx.shortest_simple_paths( |
||
189 | graph or self.graph, |
||
190 | source, |
||
191 | destination, |
||
192 | weight=weight, |
||
193 | ), |
||
194 | k, |
||
195 | ) |
||
196 | ) |
||
197 | 1 | except (NodeNotFound, NetworkXNoPath): |
|
198 | 1 | return [] |
|
199 | |||
200 | 1 | def constrained_k_shortest_paths( |
|
201 | self, |
||
202 | source, |
||
203 | destination, |
||
204 | weight=None, |
||
205 | k=1, |
||
206 | graph=None, |
||
207 | minimum_hits=None, |
||
208 | **metrics, |
||
209 | ): |
||
210 | """Calculate the constrained shortest paths with flexibility.""" |
||
211 | 1 | graph = graph or self.graph |
|
212 | 1 | mandatory_metrics = metrics.get("mandatory_metrics", {}) |
|
213 | 1 | flexible_metrics = metrics.get("flexible_metrics", {}) |
|
214 | 1 | first_pass_links = list( |
|
215 | self._filter_links( |
||
216 | graph.edges(data=True), **mandatory_metrics |
||
217 | ) |
||
218 | ) |
||
219 | 1 | length = len(flexible_metrics) |
|
220 | 1 | if minimum_hits is None: |
|
221 | 1 | minimum_hits = 0 |
|
222 | 1 | minimum_hits = min(length, max(0, minimum_hits)) |
|
223 | |||
224 | 1 | paths = [] |
|
225 | 1 | for i in range(length, minimum_hits - 1, -1): |
|
226 | 1 | for combo in combinations(flexible_metrics.items(), i): |
|
227 | 1 | additional = dict(combo) |
|
228 | 1 | filtered_links = self._filter_links( |
|
229 | first_pass_links, **additional |
||
230 | ) |
||
231 | 1 | filtered_links = ((u, v) for u, v, d in filtered_links) |
|
0 ignored issues
–
show
introduced
by
![]() |
|||
232 | 1 | for path in self.k_shortest_paths( |
|
233 | source, |
||
234 | destination, |
||
235 | weight=weight, |
||
236 | k=k, |
||
237 | graph=graph.edge_subgraph(filtered_links), |
||
238 | ): |
||
239 | 1 | paths.append( |
|
240 | { |
||
241 | "hops": path, |
||
242 | "metrics": {**mandatory_metrics, **additional}, |
||
243 | } |
||
244 | ) |
||
245 | 1 | if len(paths) == k: |
|
246 | 1 | return paths |
|
247 | 1 | if paths: |
|
248 | 1 | return paths |
|
249 | 1 | return paths |
|
250 | |||
251 | 1 | def _filter_links(self, links, **metrics): |
|
252 | 1 | for metric, value in metrics.items(): |
|
253 | 1 | filter_func = self._filter_functions.get(metric, None) |
|
254 | 1 | if filter_func is not None: |
|
255 | 1 | try: |
|
256 | 1 | links = filter_func(value, links) |
|
257 | except TypeError as err: |
||
258 | raise TypeError( |
||
259 | f"Error in {metric} value: {value} err: {err}" |
||
260 | ) |
||
261 | return links |
||
262 |