1
|
|
|
"""Module Graph of kytos/pathfinder Kytos Network Application.""" |
2
|
|
|
|
3
|
|
|
# pylint: disable=too-many-arguments,too-many-locals |
4
|
1 |
|
from itertools import combinations, islice |
5
|
|
|
|
6
|
1 |
|
from kytos.core import log |
7
|
1 |
|
from napps.kytos.pathfinder.utils import (filter_ge, filter_in, filter_le, |
8
|
|
|
lazy_filter, nx_edge_data_delay, |
9
|
|
|
nx_edge_data_priority, |
10
|
|
|
nx_edge_data_weight) |
11
|
|
|
|
12
|
1 |
|
try: |
13
|
1 |
|
import networkx as nx |
14
|
1 |
|
from networkx.exception import NetworkXNoPath, NodeNotFound |
15
|
|
|
except ImportError: |
16
|
|
|
PACKAGE = "networkx==2.5.1" |
17
|
|
|
log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
18
|
|
|
|
19
|
|
|
|
20
|
1 |
|
class KytosGraph: |
21
|
|
|
"""Class responsible for the graph generation.""" |
22
|
|
|
|
23
|
1 |
|
def __init__(self): |
24
|
1 |
|
self.graph = nx.Graph() |
25
|
1 |
|
self._filter_functions = { |
26
|
|
|
"ownership": lazy_filter(str, filter_in("ownership")), |
27
|
|
|
"bandwidth": lazy_filter((int, float), filter_ge("bandwidth")), |
28
|
|
|
"reliability": lazy_filter((int, float), filter_ge("reliability")), |
29
|
|
|
"priority": lazy_filter((int, float), filter_le("priority")), |
30
|
|
|
"utilization": lazy_filter((int, float), filter_le("utilization")), |
31
|
|
|
"delay": lazy_filter((int, float), filter_le("delay")), |
32
|
|
|
} |
33
|
1 |
|
self.spf_edge_data_cbs = { |
34
|
|
|
"hop": nx_edge_data_weight, |
35
|
|
|
"delay": nx_edge_data_delay, |
36
|
|
|
"priority": nx_edge_data_priority, |
37
|
|
|
} |
38
|
|
|
|
39
|
1 |
|
def clear(self): |
40
|
|
|
"""Remove all nodes and links registered.""" |
41
|
1 |
|
self.graph.clear() |
42
|
|
|
|
43
|
1 |
|
def update_topology(self, topology): |
44
|
|
|
"""Update all nodes and links inside the graph.""" |
45
|
1 |
|
self.graph.clear() |
46
|
1 |
|
self.update_nodes(topology.switches) |
47
|
1 |
|
self.update_links(topology.links) |
48
|
|
|
|
49
|
1 |
|
def update_nodes(self, nodes): |
50
|
|
|
"""Update all nodes inside the graph.""" |
51
|
1 |
|
for node in nodes.values(): |
52
|
1 |
|
try: |
53
|
1 |
|
self.graph.add_node(node.id) |
54
|
|
|
|
55
|
1 |
|
for interface in node.interfaces.values(): |
56
|
1 |
|
self.graph.add_node(interface.id) |
57
|
1 |
|
self.graph.add_edge(node.id, interface.id) |
58
|
|
|
|
59
|
1 |
|
except AttributeError as err: |
60
|
1 |
|
raise TypeError( |
61
|
|
|
f"Error when updating nodes inside the graph: {str(err)}" |
62
|
|
|
) |
63
|
|
|
|
64
|
1 |
|
def update_links(self, links): |
65
|
|
|
"""Update all links inside the graph.""" |
66
|
1 |
|
for link in links.values(): |
67
|
1 |
|
if link.is_active(): |
68
|
1 |
|
self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
69
|
1 |
|
self.update_link_metadata(link) |
70
|
|
|
|
71
|
1 |
|
def update_link_metadata(self, link): |
72
|
|
|
"""Update link metadata.""" |
73
|
1 |
|
for key, value in link.metadata.items(): |
74
|
1 |
|
if key not in self._filter_functions: |
75
|
1 |
|
continue |
76
|
1 |
|
endpoint_a = link.endpoint_a.id |
77
|
1 |
|
endpoint_b = link.endpoint_b.id |
78
|
1 |
|
self.graph[endpoint_a][endpoint_b][key] = value |
79
|
|
|
|
80
|
1 |
|
def get_link_metadata(self, endpoint_a, endpoint_b): |
81
|
|
|
"""Return the metadata of a link.""" |
82
|
1 |
|
return self.graph.get_edge_data(endpoint_a, endpoint_b) |
83
|
|
|
|
84
|
1 |
|
@staticmethod |
85
|
|
|
def _remove_switch_hops(circuit): |
86
|
|
|
"""Remove switch hops from a circuit hops list.""" |
87
|
1 |
|
for hop in circuit["hops"]: |
88
|
1 |
|
if len(hop.split(":")) == 8: |
89
|
1 |
|
circuit["hops"].remove(hop) |
90
|
|
|
|
91
|
1 |
|
def _path_cost(self, path, weight="hop", default_cost=1): |
92
|
|
|
"""Compute the path cost given an attribute.""" |
93
|
1 |
|
cost = 0 |
94
|
1 |
|
for node, nbr in nx.utils.pairwise(path): |
95
|
1 |
|
cost += self.graph[node][nbr].get(weight, default_cost) |
96
|
1 |
|
return cost |
97
|
|
|
|
98
|
1 |
|
def path_cost_builder(self, paths, weight="hop", default_weight=1): |
99
|
|
|
"""Build the cost of a path given a list of paths.""" |
100
|
1 |
|
paths_acc = [] |
101
|
1 |
|
for path in paths: |
102
|
1 |
|
if isinstance(path, list): |
103
|
1 |
|
paths_acc.append( |
104
|
|
|
{ |
105
|
|
|
"hops": path, |
106
|
|
|
"cost": self._path_cost( |
107
|
|
|
path, weight=weight, default_cost=default_weight |
108
|
|
|
), |
109
|
|
|
} |
110
|
|
|
) |
111
|
1 |
|
elif isinstance(path, dict): |
112
|
1 |
|
path["cost"] = self._path_cost( |
113
|
|
|
path["hops"], weight=weight, default_cost=default_weight |
114
|
|
|
) |
115
|
1 |
|
paths_acc.append(path) |
116
|
|
|
else: |
117
|
|
|
raise TypeError( |
118
|
|
|
f"type: '{type(path)}' must be be either list or dict. " |
119
|
|
|
f"path: {path}" |
120
|
|
|
) |
121
|
1 |
|
return paths_acc |
122
|
|
|
|
123
|
1 |
|
def k_shortest_paths( |
124
|
|
|
self, source, destination, weight=None, k=1, graph=None |
125
|
|
|
): |
126
|
|
|
""" |
127
|
|
|
Compute up to k shortest paths and return them. |
128
|
|
|
|
129
|
|
|
This procedure is based on algorithm by Jin Y. Yen [1]. |
130
|
|
|
Since Yen's algorithm calls Dijkstra's up to k times, the time |
131
|
|
|
complexity will be proportional to K * Dijkstra's, average |
132
|
|
|
O(K(|V| + |E|)logV), assuming it's using a heap, where V is the |
133
|
|
|
number of vertices and E number of egdes. |
134
|
|
|
|
135
|
|
|
References |
136
|
|
|
---------- |
137
|
|
|
.. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a |
138
|
|
|
Network", Management Science, Vol. 17, No. 11, Theory Series |
139
|
|
|
(Jul., 1971), pp. 712-716. |
140
|
|
|
""" |
141
|
1 |
|
try: |
142
|
1 |
|
return list( |
143
|
|
|
islice( |
144
|
|
|
nx.shortest_simple_paths( |
145
|
|
|
graph or self.graph, |
146
|
|
|
source, |
147
|
|
|
destination, |
148
|
|
|
weight=weight, |
149
|
|
|
), |
150
|
|
|
k, |
151
|
|
|
) |
152
|
|
|
) |
153
|
1 |
|
except (NodeNotFound, NetworkXNoPath): |
154
|
1 |
|
return [] |
155
|
|
|
|
156
|
1 |
|
def constrained_k_shortest_paths( |
157
|
|
|
self, |
158
|
|
|
source, |
159
|
|
|
destination, |
160
|
|
|
weight=None, |
161
|
|
|
k=1, |
162
|
|
|
minimum_hits=None, |
163
|
|
|
**metrics, |
164
|
|
|
): |
165
|
|
|
"""Calculate the constrained shortest paths with flexibility.""" |
166
|
1 |
|
mandatory_metrics = metrics.get("mandatory_metrics", {}) |
167
|
1 |
|
flexible_metrics = metrics.get("flexible_metrics", {}) |
168
|
1 |
|
first_pass_links = list( |
169
|
|
|
self._filter_links( |
170
|
|
|
self.graph.edges(data=True), **mandatory_metrics |
171
|
|
|
) |
172
|
|
|
) |
173
|
1 |
|
length = len(flexible_metrics) |
174
|
1 |
|
if minimum_hits is None: |
175
|
1 |
|
minimum_hits = 0 |
176
|
1 |
|
minimum_hits = min(length, max(0, minimum_hits)) |
177
|
|
|
|
178
|
1 |
|
paths = [] |
179
|
1 |
|
for i in range(length, minimum_hits - 1, -1): |
180
|
1 |
|
for combo in combinations(flexible_metrics.items(), i): |
181
|
1 |
|
additional = dict(combo) |
182
|
1 |
|
filtered_links = self._filter_links( |
183
|
|
|
first_pass_links, **additional |
184
|
|
|
) |
185
|
1 |
|
filtered_links = ((u, v) for u, v, d in filtered_links) |
|
|
|
|
186
|
1 |
|
for path in self.k_shortest_paths( |
187
|
|
|
source, |
188
|
|
|
destination, |
189
|
|
|
weight=weight, |
190
|
|
|
k=k, |
191
|
|
|
graph=self.graph.edge_subgraph(filtered_links), |
192
|
|
|
): |
193
|
1 |
|
paths.append( |
194
|
|
|
{ |
195
|
|
|
"hops": path, |
196
|
|
|
"metrics": {**mandatory_metrics, **additional}, |
197
|
|
|
} |
198
|
|
|
) |
199
|
1 |
|
if len(paths) == k: |
200
|
1 |
|
return paths |
201
|
1 |
|
if paths: |
202
|
1 |
|
return paths |
203
|
1 |
|
return paths |
204
|
|
|
|
205
|
1 |
|
def _filter_links(self, links, **metrics): |
206
|
1 |
|
for metric, value in metrics.items(): |
207
|
1 |
|
filter_func = self._filter_functions.get(metric, None) |
208
|
1 |
|
if filter_func is not None: |
209
|
1 |
|
try: |
210
|
1 |
|
links = filter_func(value, links) |
211
|
1 |
|
except TypeError as err: |
212
|
1 |
|
raise TypeError( |
213
|
|
|
f"Error in {metric} value: {value} err: {err}" |
214
|
|
|
) |
215
|
|
|
return links |
216
|
|
|
|