1
|
|
|
"""Module Graph of kytos/pathfinder Kytos Network Application.""" |
2
|
|
|
|
3
|
|
|
# pylint: enable=too-many-arguments,too-many-locals |
4
|
1 |
|
from itertools import combinations, islice |
5
|
1 |
|
import operator |
6
|
|
|
|
7
|
1 |
|
from kytos.core import log |
8
|
1 |
|
from kytos.core.common import EntityStatus |
9
|
|
|
|
10
|
1 |
|
from .filters import EdgeFilter, ProcessEdgeAttribute, TypeCheckPreprocessor, TypeDifferentiatedProcessor, UseDefaultIfNone, UseValIfNone |
11
|
1 |
|
from .weights import (nx_edge_data_delay, nx_edge_data_priority, nx_edge_data_weight) |
12
|
|
|
|
13
|
|
|
|
14
|
1 |
|
try: |
15
|
1 |
|
import networkx as nx |
16
|
1 |
|
from networkx.exception import NetworkXNoPath, NodeNotFound |
17
|
|
|
except ImportError: |
18
|
|
|
PACKAGE = "networkx==2.5.1" |
19
|
|
|
log.error(f"Package {PACKAGE} not found. Please 'pip install {PACKAGE}'") |
20
|
|
|
|
21
|
|
|
|
22
|
1 |
|
class KytosGraph: |
23
|
|
|
"""Class responsible for the graph generation.""" |
24
|
|
|
|
25
|
1 |
|
def __init__(self): |
26
|
1 |
|
self.graph = nx.Graph() |
27
|
1 |
|
self._accepted_metadata = { |
28
|
|
|
'ownership', |
29
|
|
|
'bandwidth', |
30
|
|
|
'reliability', |
31
|
|
|
'priority', |
32
|
|
|
'utilization', |
33
|
|
|
'delay', |
34
|
|
|
} |
35
|
1 |
|
ownership_processor = ProcessEdgeAttribute( |
36
|
|
|
'ownership', |
37
|
|
|
TypeDifferentiatedProcessor({ |
38
|
|
|
str: lambda x: frozenset(x.split()), |
39
|
|
|
dict: lambda x: frozenset(x.keys()), |
40
|
|
|
type(None): None |
41
|
|
|
}) |
42
|
|
|
) |
43
|
1 |
|
self._filter_functions = { |
44
|
|
|
"ownership": EdgeFilter( |
45
|
|
|
operator.contains, |
46
|
|
|
UseValIfNone(ownership_processor), |
47
|
|
|
TypeCheckPreprocessor( |
48
|
|
|
str |
49
|
|
|
) |
50
|
|
|
), |
51
|
|
|
"not_ownership": EdgeFilter( |
52
|
|
|
lambda a, b: not (a & b), |
53
|
|
|
UseDefaultIfNone(ownership_processor, frozenset()), |
54
|
|
|
TypeDifferentiatedProcessor({ |
55
|
|
|
str: lambda val: frozenset(val.split(',')), |
56
|
|
|
list: lambda val: frozenset(val) |
57
|
|
|
}) |
58
|
|
|
), |
59
|
|
|
"bandwidth": EdgeFilter( |
60
|
|
|
operator.ge, |
61
|
|
|
'bandwidth', |
62
|
|
|
TypeCheckPreprocessor((int, float)) |
63
|
|
|
|
64
|
|
|
), |
65
|
|
|
"reliability": EdgeFilter( |
66
|
|
|
operator.ge, |
67
|
|
|
'reliability', |
68
|
|
|
TypeCheckPreprocessor((int, float)) |
69
|
|
|
), |
70
|
|
|
"priority": EdgeFilter( |
71
|
|
|
operator.le, |
72
|
|
|
'priority', |
73
|
|
|
TypeCheckPreprocessor((int, float)) |
74
|
|
|
), |
75
|
|
|
"utilization": EdgeFilter( |
76
|
|
|
operator.le, |
77
|
|
|
'utilization', |
78
|
|
|
TypeCheckPreprocessor((int, float)) |
79
|
|
|
), |
80
|
|
|
"delay": EdgeFilter( |
81
|
|
|
operator.le, |
82
|
|
|
'delay', |
83
|
|
|
TypeCheckPreprocessor((int, float)) |
84
|
|
|
), |
85
|
|
|
} |
86
|
1 |
|
self.spf_edge_data_cbs = { |
87
|
|
|
"hop": nx_edge_data_weight, |
88
|
|
|
"delay": nx_edge_data_delay, |
89
|
|
|
"priority": nx_edge_data_priority, |
90
|
|
|
} |
91
|
|
|
|
92
|
1 |
|
def clear(self): |
93
|
|
|
"""Remove all nodes and links registered.""" |
94
|
1 |
|
self.graph.clear() |
95
|
|
|
|
96
|
1 |
|
def update_topology(self, topology): |
97
|
|
|
"""Update all nodes and links inside the graph.""" |
98
|
1 |
|
self.graph.clear() |
99
|
1 |
|
self.update_nodes(topology.switches) |
100
|
1 |
|
self.update_links(topology.links) |
101
|
|
|
|
102
|
1 |
|
def update_nodes(self, nodes): |
103
|
|
|
"""Update all nodes inside the graph.""" |
104
|
1 |
|
for node in nodes.values(): |
105
|
1 |
|
try: |
106
|
1 |
|
if node.status != EntityStatus.UP: |
107
|
1 |
|
continue |
108
|
1 |
|
self.graph.add_node(node.id) |
109
|
|
|
|
110
|
1 |
|
for interface in node.interfaces.values(): |
111
|
1 |
|
if interface.status == EntityStatus.UP: |
112
|
1 |
|
self.graph.add_node(interface.id) |
113
|
1 |
|
self.graph.add_edge(node.id, interface.id) |
114
|
|
|
|
115
|
1 |
|
except AttributeError as err: |
116
|
1 |
|
raise TypeError( |
117
|
|
|
f"Error when updating nodes inside the graph: {str(err)}" |
118
|
|
|
) |
119
|
|
|
|
120
|
1 |
|
def update_links(self, links): |
121
|
|
|
"""Update all links inside the graph.""" |
122
|
1 |
|
for link in links.values(): |
123
|
1 |
|
if link.status == EntityStatus.UP: |
124
|
1 |
|
self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
125
|
1 |
|
self.update_link_metadata(link) |
126
|
|
|
|
127
|
1 |
|
def update_link_metadata(self, link): |
128
|
|
|
"""Update link metadata.""" |
129
|
1 |
|
for key, value in link.metadata.items(): |
130
|
1 |
|
if key not in self._accepted_metadata: |
131
|
1 |
|
continue |
132
|
1 |
|
endpoint_a = link.endpoint_a.id |
133
|
1 |
|
endpoint_b = link.endpoint_b.id |
134
|
1 |
|
self.graph[endpoint_a][endpoint_b][key] = value |
135
|
|
|
|
136
|
1 |
|
def get_link_metadata(self, endpoint_a, endpoint_b): |
137
|
|
|
"""Return the metadata of a link.""" |
138
|
1 |
|
return self.graph.get_edge_data(endpoint_a, endpoint_b) |
139
|
|
|
|
140
|
1 |
|
@staticmethod |
141
|
1 |
|
def _remove_switch_hops(circuit): |
142
|
|
|
"""Remove switch hops from a circuit hops list.""" |
143
|
1 |
|
for hop in circuit["hops"]: |
144
|
1 |
|
if len(hop.split(":")) == 8: |
145
|
1 |
|
circuit["hops"].remove(hop) |
146
|
|
|
|
147
|
1 |
|
def _path_cost(self, path, weight="hop", default_cost=1): |
148
|
|
|
"""Compute the path cost given an attribute.""" |
149
|
1 |
|
cost = 0 |
150
|
1 |
|
for node, nbr in nx.utils.pairwise(path): |
151
|
1 |
|
cost += self.graph[node][nbr].get(weight, default_cost) |
152
|
1 |
|
return cost |
153
|
|
|
|
154
|
1 |
|
def path_cost_builder(self, paths, weight="hop", default_weight=1): |
155
|
|
|
"""Build the cost of a path given a list of paths.""" |
156
|
1 |
|
paths_acc = [] |
157
|
1 |
|
for path in paths: |
158
|
1 |
|
if isinstance(path, list): |
159
|
1 |
|
paths_acc.append( |
160
|
|
|
{ |
161
|
|
|
"hops": path, |
162
|
|
|
"cost": self._path_cost( |
163
|
|
|
path, weight=weight, default_cost=default_weight |
164
|
|
|
), |
165
|
|
|
} |
166
|
|
|
) |
167
|
1 |
|
elif isinstance(path, dict): |
168
|
1 |
|
path["cost"] = self._path_cost( |
169
|
|
|
path["hops"], weight=weight, default_cost=default_weight |
170
|
|
|
) |
171
|
1 |
|
paths_acc.append(path) |
172
|
|
|
else: |
173
|
|
|
raise TypeError( |
174
|
|
|
f"type: '{type(path)}' must be be either list or dict. " |
175
|
|
|
f"path: {path}" |
176
|
|
|
) |
177
|
1 |
|
return paths_acc |
178
|
|
|
|
179
|
1 |
|
def k_shortest_paths( |
180
|
|
|
self, source, destination, weight=None, k=1, graph=None |
181
|
|
|
): |
182
|
|
|
""" |
183
|
|
|
Compute up to k shortest paths and return them. |
184
|
|
|
|
185
|
|
|
This procedure is based on algorithm by Jin Y. Yen [1]. |
186
|
|
|
Since Yen's algorithm calls Dijkstra's up to k times, the time |
187
|
|
|
complexity will be proportional to K * Dijkstra's, average |
188
|
|
|
O(K(|V| + |E|)logV), assuming it's using a heap, where V is the |
189
|
|
|
number of vertices and E number of egdes. |
190
|
|
|
|
191
|
|
|
References |
192
|
|
|
---------- |
193
|
|
|
.. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a |
194
|
|
|
Network", Management Science, Vol. 17, No. 11, Theory Series |
195
|
|
|
(Jul., 1971), pp. 712-716. |
196
|
|
|
""" |
197
|
1 |
|
try: |
198
|
1 |
|
return list( |
199
|
|
|
islice( |
200
|
|
|
nx.shortest_simple_paths( |
201
|
|
|
graph or self.graph, |
202
|
|
|
source, |
203
|
|
|
destination, |
204
|
|
|
weight=weight, |
205
|
|
|
), |
206
|
|
|
k, |
207
|
|
|
) |
208
|
|
|
) |
209
|
1 |
|
except (NodeNotFound, NetworkXNoPath): |
210
|
1 |
|
return [] |
211
|
|
|
|
212
|
1 |
|
def constrained_k_shortest_paths( |
213
|
|
|
self, |
214
|
|
|
source, |
215
|
|
|
destination, |
216
|
|
|
weight=None, |
217
|
|
|
k=1, |
218
|
|
|
graph=None, |
219
|
|
|
minimum_hits=None, |
220
|
|
|
**metrics, |
221
|
|
|
): |
222
|
|
|
"""Calculate the constrained shortest paths with flexibility.""" |
223
|
1 |
|
graph = graph or self.graph |
224
|
1 |
|
mandatory_metrics = metrics.get("mandatory_metrics", {}) |
225
|
1 |
|
flexible_metrics = metrics.get("flexible_metrics", {}) |
226
|
1 |
|
first_pass_links = list( |
227
|
|
|
self._filter_links( |
228
|
|
|
graph.edges(data=True), **mandatory_metrics |
229
|
|
|
) |
230
|
|
|
) |
231
|
1 |
|
length = len(flexible_metrics) |
232
|
1 |
|
if minimum_hits is None: |
233
|
1 |
|
minimum_hits = 0 |
234
|
1 |
|
minimum_hits = min(length, max(0, minimum_hits)) |
235
|
|
|
|
236
|
1 |
|
paths = [] |
237
|
1 |
|
for i in range(length, minimum_hits - 1, -1): |
238
|
1 |
|
for combo in combinations(flexible_metrics.items(), i): |
239
|
1 |
|
additional = dict(combo) |
240
|
1 |
|
filtered_links = self._filter_links( |
241
|
|
|
first_pass_links, **additional |
242
|
|
|
) |
243
|
1 |
|
filtered_links = ((u, v) for u, v, d in filtered_links) |
|
|
|
|
244
|
1 |
|
for path in self.k_shortest_paths( |
245
|
|
|
source, |
246
|
|
|
destination, |
247
|
|
|
weight=weight, |
248
|
|
|
k=k, |
249
|
|
|
graph=graph.edge_subgraph(filtered_links), |
250
|
|
|
): |
251
|
1 |
|
paths.append( |
252
|
|
|
{ |
253
|
|
|
"hops": path, |
254
|
|
|
"metrics": {**mandatory_metrics, **additional}, |
255
|
|
|
} |
256
|
|
|
) |
257
|
1 |
|
if len(paths) == k: |
258
|
1 |
|
return paths |
259
|
1 |
|
if paths: |
260
|
1 |
|
return paths |
261
|
1 |
|
return paths |
262
|
|
|
|
263
|
1 |
|
def _filter_links(self, links, **metrics): |
264
|
1 |
|
for metric, value in metrics.items(): |
265
|
1 |
|
filter_func = self._filter_functions.get(metric, None) |
266
|
1 |
|
if filter_func is not None: |
267
|
1 |
|
try: |
268
|
1 |
|
links = filter_func(value, links) |
269
|
1 |
|
except TypeError as err: |
270
|
1 |
|
raise TypeError( |
271
|
|
|
f"Error in {metric} value: {value} err: {err}" |
272
|
|
|
) |
273
|
|
|
return links |
274
|
|
|
|