|
1
|
|
|
"""Module Graph of kytos/pathfinder Kytos Network Application.""" |
|
2
|
|
|
|
|
3
|
|
|
# pylint: enable=too-many-arguments,too-many-locals |
|
4
|
1 |
|
from itertools import combinations, islice |
|
5
|
1 |
|
import operator |
|
6
|
|
|
|
|
7
|
1 |
|
from kytos.core import log |
|
8
|
1 |
|
from kytos.core.common import EntityStatus |
|
9
|
|
|
|
|
10
|
1 |
|
from .filters import EdgeFilter, ProcessEdgeAttribute, TypeCheckPreprocessor, TypeDifferentiatedProcessor, UseDefaultIfNone, UseValIfNone |
|
11
|
1 |
|
from .weights import (nx_edge_data_delay, nx_edge_data_priority, nx_edge_data_weight) |
|
12
|
|
|
|
|
13
|
|
|
|
|
14
|
1 |
|
import networkx as nx |
|
15
|
1 |
|
from networkx.exception import NetworkXNoPath, NodeNotFound |
|
16
|
|
|
|
|
17
|
|
|
|
|
18
|
1 |
|
class KytosGraph: |
|
19
|
|
|
"""Class responsible for the graph generation.""" |
|
20
|
|
|
|
|
21
|
1 |
|
def __init__(self): |
|
22
|
1 |
|
self.graph = nx.Graph() |
|
23
|
1 |
|
self._accepted_metadata = { |
|
24
|
|
|
'ownership', |
|
25
|
|
|
'bandwidth', |
|
26
|
|
|
'reliability', |
|
27
|
|
|
'priority', |
|
28
|
|
|
'utilization', |
|
29
|
|
|
'delay', |
|
30
|
|
|
} |
|
31
|
1 |
|
ownership_processor = ProcessEdgeAttribute( |
|
32
|
|
|
'ownership', |
|
33
|
|
|
TypeDifferentiatedProcessor({ |
|
34
|
|
|
str: lambda x: frozenset(x.split()), |
|
35
|
|
|
dict: lambda x: frozenset(x.keys()), |
|
36
|
|
|
list: lambda x: frozenset(x), |
|
37
|
|
|
type(None): None |
|
38
|
|
|
}) |
|
39
|
|
|
) |
|
40
|
1 |
|
self._filter_functions = { |
|
41
|
|
|
"ownership": EdgeFilter( |
|
42
|
|
|
operator.contains, |
|
43
|
|
|
UseValIfNone(ownership_processor) |
|
44
|
|
|
), |
|
45
|
|
|
"not_ownership": EdgeFilter( |
|
46
|
|
|
lambda a, b: not (a & b), |
|
47
|
|
|
UseDefaultIfNone(ownership_processor, frozenset()), |
|
48
|
|
|
TypeDifferentiatedProcessor({ |
|
49
|
|
|
str: lambda val: frozenset(val.split(',')), |
|
50
|
|
|
list: lambda val: frozenset(val) |
|
51
|
|
|
}) |
|
52
|
|
|
), |
|
53
|
|
|
"bandwidth": EdgeFilter( |
|
54
|
|
|
operator.ge, |
|
55
|
|
|
'bandwidth' |
|
56
|
|
|
), |
|
57
|
|
|
"reliability": EdgeFilter( |
|
58
|
|
|
operator.ge, |
|
59
|
|
|
'reliability' |
|
60
|
|
|
), |
|
61
|
|
|
"priority": EdgeFilter( |
|
62
|
|
|
operator.le, |
|
63
|
|
|
'priority' |
|
64
|
|
|
), |
|
65
|
|
|
"utilization": EdgeFilter( |
|
66
|
|
|
operator.le, |
|
67
|
|
|
'utilization' |
|
68
|
|
|
), |
|
69
|
|
|
"delay": EdgeFilter( |
|
70
|
|
|
operator.le, |
|
71
|
|
|
'delay' |
|
72
|
|
|
), |
|
73
|
|
|
} |
|
74
|
1 |
|
self.spf_edge_data_cbs = { |
|
75
|
|
|
"hop": nx_edge_data_weight, |
|
76
|
|
|
"delay": nx_edge_data_delay, |
|
77
|
|
|
"priority": nx_edge_data_priority, |
|
78
|
|
|
} |
|
79
|
|
|
|
|
80
|
1 |
|
def clear(self): |
|
81
|
|
|
"""Remove all nodes and links registered.""" |
|
82
|
1 |
|
self.graph.clear() |
|
83
|
|
|
|
|
84
|
1 |
|
def update_topology(self, topology): |
|
85
|
|
|
"""Update all nodes and links inside the graph.""" |
|
86
|
1 |
|
self.graph.clear() |
|
87
|
1 |
|
self.update_nodes(topology.switches.copy()) |
|
88
|
1 |
|
self.update_links(topology.links.copy()) |
|
89
|
|
|
|
|
90
|
1 |
|
def update_nodes(self, nodes): |
|
91
|
|
|
"""Update all nodes inside the graph.""" |
|
92
|
1 |
|
for node in nodes.values(): |
|
93
|
1 |
|
try: |
|
94
|
1 |
|
if node.status != EntityStatus.UP: |
|
95
|
1 |
|
continue |
|
96
|
1 |
|
self.graph.add_node(node.id) |
|
97
|
|
|
|
|
98
|
1 |
|
for interface in node.interfaces.copy().values(): |
|
99
|
1 |
|
if interface.status == EntityStatus.UP: |
|
100
|
1 |
|
self.graph.add_node(interface.id) |
|
101
|
1 |
|
self.graph.add_edge(node.id, interface.id) |
|
102
|
|
|
|
|
103
|
1 |
|
except AttributeError as err: |
|
104
|
1 |
|
raise TypeError( |
|
105
|
|
|
f"Error when updating nodes inside the graph: {str(err)}" |
|
106
|
|
|
) |
|
107
|
|
|
|
|
108
|
1 |
|
def update_links(self, links): |
|
109
|
|
|
"""Update all links inside the graph.""" |
|
110
|
1 |
|
for link in links.values(): |
|
111
|
1 |
|
if link.status == EntityStatus.UP: |
|
112
|
1 |
|
self.graph.add_edge(link.endpoint_a.id, link.endpoint_b.id) |
|
113
|
1 |
|
self.update_link_metadata(link) |
|
114
|
|
|
|
|
115
|
1 |
|
def update_link_metadata(self, link): |
|
116
|
|
|
"""Update link metadata.""" |
|
117
|
1 |
|
for key, value in link.metadata.copy().items(): |
|
118
|
1 |
|
if key not in self._accepted_metadata: |
|
119
|
1 |
|
continue |
|
120
|
1 |
|
endpoint_a = link.endpoint_a.id |
|
121
|
1 |
|
endpoint_b = link.endpoint_b.id |
|
122
|
1 |
|
self.graph[endpoint_a][endpoint_b][key] = value |
|
123
|
|
|
|
|
124
|
1 |
|
def get_link_metadata(self, endpoint_a, endpoint_b): |
|
125
|
|
|
"""Return the metadata of a link.""" |
|
126
|
1 |
|
return self.graph.get_edge_data(endpoint_a, endpoint_b) |
|
127
|
|
|
|
|
128
|
1 |
|
@staticmethod |
|
129
|
1 |
|
def _remove_switch_hops(circuit): |
|
130
|
|
|
"""Remove switch hops from a circuit hops list.""" |
|
131
|
1 |
|
for hop in circuit["hops"]: |
|
132
|
1 |
|
if len(hop.split(":")) == 8: |
|
133
|
1 |
|
circuit["hops"].remove(hop) |
|
134
|
|
|
|
|
135
|
1 |
|
def _path_cost(self, path, weight="hop", default_cost=1): |
|
136
|
|
|
"""Compute the path cost given an attribute.""" |
|
137
|
1 |
|
cost = 0 |
|
138
|
1 |
|
for node, nbr in nx.utils.pairwise(path): |
|
139
|
1 |
|
cost += self.graph[node][nbr].get(weight, default_cost) |
|
140
|
1 |
|
return cost |
|
141
|
|
|
|
|
142
|
1 |
|
def path_cost_builder(self, paths, weight="hop", default_weight=1): |
|
143
|
|
|
"""Build the cost of a path given a list of paths.""" |
|
144
|
1 |
|
paths_acc = [] |
|
145
|
1 |
|
for path in paths: |
|
146
|
1 |
|
if isinstance(path, list): |
|
147
|
1 |
|
paths_acc.append( |
|
148
|
|
|
{ |
|
149
|
|
|
"hops": path, |
|
150
|
|
|
"cost": self._path_cost( |
|
151
|
|
|
path, weight=weight, default_cost=default_weight |
|
152
|
|
|
), |
|
153
|
|
|
} |
|
154
|
|
|
) |
|
155
|
1 |
|
elif isinstance(path, dict): |
|
156
|
1 |
|
path["cost"] = self._path_cost( |
|
157
|
|
|
path["hops"], weight=weight, default_cost=default_weight |
|
158
|
|
|
) |
|
159
|
1 |
|
paths_acc.append(path) |
|
160
|
|
|
else: |
|
161
|
|
|
raise TypeError( |
|
162
|
|
|
f"type: '{type(path)}' must be be either list or dict. " |
|
163
|
|
|
f"path: {path}" |
|
164
|
|
|
) |
|
165
|
1 |
|
return paths_acc |
|
166
|
|
|
|
|
167
|
1 |
|
def k_shortest_paths( |
|
168
|
|
|
self, source, destination, weight=None, k=1, graph=None |
|
169
|
|
|
): |
|
170
|
|
|
""" |
|
171
|
|
|
Compute up to k shortest paths and return them. |
|
172
|
|
|
|
|
173
|
|
|
This procedure is based on algorithm by Jin Y. Yen [1]. |
|
174
|
|
|
Since Yen's algorithm calls Dijkstra's up to k times, the time |
|
175
|
|
|
complexity will be proportional to K * Dijkstra's, average |
|
176
|
|
|
O(K(|V| + |E|)logV), assuming it's using a heap, where V is the |
|
177
|
|
|
number of vertices and E number of egdes. |
|
178
|
|
|
|
|
179
|
|
|
References |
|
180
|
|
|
---------- |
|
181
|
|
|
.. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a |
|
182
|
|
|
Network", Management Science, Vol. 17, No. 11, Theory Series |
|
183
|
|
|
(Jul., 1971), pp. 712-716. |
|
184
|
|
|
""" |
|
185
|
1 |
|
try: |
|
186
|
1 |
|
return list( |
|
187
|
|
|
islice( |
|
188
|
|
|
nx.shortest_simple_paths( |
|
189
|
|
|
graph or self.graph, |
|
190
|
|
|
source, |
|
191
|
|
|
destination, |
|
192
|
|
|
weight=weight, |
|
193
|
|
|
), |
|
194
|
|
|
k, |
|
195
|
|
|
) |
|
196
|
|
|
) |
|
197
|
1 |
|
except (NodeNotFound, NetworkXNoPath): |
|
198
|
1 |
|
return [] |
|
199
|
|
|
|
|
200
|
1 |
|
def constrained_k_shortest_paths( |
|
201
|
|
|
self, |
|
202
|
|
|
source, |
|
203
|
|
|
destination, |
|
204
|
|
|
weight=None, |
|
205
|
|
|
k=1, |
|
206
|
|
|
graph=None, |
|
207
|
|
|
minimum_hits=None, |
|
208
|
|
|
**metrics, |
|
209
|
|
|
): |
|
210
|
|
|
"""Calculate the constrained shortest paths with flexibility.""" |
|
211
|
1 |
|
graph = graph or self.graph |
|
212
|
1 |
|
mandatory_metrics = metrics.get("mandatory_metrics", {}) |
|
213
|
1 |
|
flexible_metrics = metrics.get("flexible_metrics", {}) |
|
214
|
1 |
|
first_pass_links = list( |
|
215
|
|
|
self._filter_links( |
|
216
|
|
|
graph.edges(data=True), **mandatory_metrics |
|
217
|
|
|
) |
|
218
|
|
|
) |
|
219
|
1 |
|
length = len(flexible_metrics) |
|
220
|
1 |
|
if minimum_hits is None: |
|
221
|
1 |
|
minimum_hits = 0 |
|
222
|
1 |
|
minimum_hits = min(length, max(0, minimum_hits)) |
|
223
|
|
|
|
|
224
|
1 |
|
paths = [] |
|
225
|
1 |
|
for i in range(length, minimum_hits - 1, -1): |
|
226
|
1 |
|
for combo in combinations(flexible_metrics.items(), i): |
|
227
|
1 |
|
additional = dict(combo) |
|
228
|
1 |
|
filtered_links = self._filter_links( |
|
229
|
|
|
first_pass_links, **additional |
|
230
|
|
|
) |
|
231
|
1 |
|
filtered_links = ((u, v) for u, v, d in filtered_links) |
|
|
|
|
|
|
232
|
1 |
|
for path in self.k_shortest_paths( |
|
233
|
|
|
source, |
|
234
|
|
|
destination, |
|
235
|
|
|
weight=weight, |
|
236
|
|
|
k=k, |
|
237
|
|
|
graph=graph.edge_subgraph(filtered_links), |
|
238
|
|
|
): |
|
239
|
1 |
|
paths.append( |
|
240
|
|
|
{ |
|
241
|
|
|
"hops": path, |
|
242
|
|
|
"metrics": {**mandatory_metrics, **additional}, |
|
243
|
|
|
} |
|
244
|
|
|
) |
|
245
|
1 |
|
if len(paths) == k: |
|
246
|
1 |
|
return paths |
|
247
|
1 |
|
if paths: |
|
248
|
1 |
|
return paths |
|
249
|
1 |
|
return paths |
|
250
|
|
|
|
|
251
|
1 |
|
def _filter_links(self, links, **metrics): |
|
252
|
1 |
|
for metric, value in metrics.items(): |
|
253
|
1 |
|
filter_func = self._filter_functions.get(metric, None) |
|
254
|
1 |
|
if filter_func is not None: |
|
255
|
1 |
|
try: |
|
256
|
1 |
|
links = filter_func(value, links) |
|
257
|
|
|
except TypeError as err: |
|
258
|
|
|
raise TypeError( |
|
259
|
|
|
f"Error in {metric} value: {value} err: {err}" |
|
260
|
|
|
) |
|
261
|
|
|
return links |
|
262
|
|
|
|