1
|
|
|
from __future__ import print_function |
2
|
|
|
|
3
|
|
|
# Standard library packages |
4
|
|
|
import codecs |
5
|
|
|
import csv |
6
|
|
|
import json |
7
|
|
|
import logging |
8
|
|
|
import os |
9
|
|
|
import re |
10
|
|
|
import textwrap |
11
|
|
|
import traceback |
12
|
|
|
|
13
|
|
|
# get basestring in py3 |
14
|
|
|
|
15
|
|
|
try: |
16
|
|
|
unicode = unicode |
17
|
|
|
except NameError: |
18
|
|
|
# 'unicode' is undefined, must be Python 3 |
19
|
|
|
unicode = str |
20
|
|
|
basestring = (str, bytes) |
21
|
|
|
else: |
22
|
|
|
# 'unicode' exists, must be Python 2 |
23
|
|
|
bytes = str |
24
|
|
|
basestring = basestring |
25
|
|
|
|
26
|
|
|
# Required third-party packages available on PyPi: |
27
|
|
|
|
28
|
|
|
import numpy as np |
29
|
|
|
|
30
|
|
|
# internal lasio imports |
31
|
|
|
|
32
|
|
|
from . import exceptions |
33
|
|
|
from .las_items import ( |
34
|
|
|
HeaderItem, CurveItem, SectionItems, OrderedDict) |
35
|
|
|
from . import defaults |
36
|
|
|
from . import reader |
37
|
|
|
from . import writer |
38
|
|
|
|
39
|
|
|
logger = logging.getLogger(__name__) |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
class LASFile(object): |
43
|
|
|
|
44
|
|
|
'''LAS file object. |
45
|
|
|
|
46
|
|
|
Keyword Arguments: |
47
|
|
|
file_ref (file-like object, str): either a filename, an open file |
48
|
|
|
object, or a string containing the contents of a file. |
49
|
|
|
|
50
|
|
|
See these routines for additional keyword arguments you can use when |
51
|
|
|
reading in a LAS file: |
52
|
|
|
|
53
|
|
|
* :func:`lasio.reader.open_with_codecs` - manage issues relate to character |
54
|
|
|
encodings |
55
|
|
|
* :meth:`lasio.las.LASFile.read` - control how NULL values and errors are |
56
|
|
|
handled during parsing |
57
|
|
|
|
58
|
|
|
Attributes: |
59
|
|
|
encoding (str or None): the character encoding used when reading the |
60
|
|
|
file in from disk |
61
|
|
|
|
62
|
|
|
''' |
63
|
|
|
|
64
|
|
|
def __init__(self, file_ref=None, **read_kwargs): |
65
|
|
|
super(LASFile, self).__init__() |
66
|
|
|
self._text = '' |
67
|
|
|
self.index_unit = None |
68
|
|
|
default_items = defaults.get_default_items() |
69
|
|
|
self.sections = { |
70
|
|
|
'Version': default_items['Version'], |
71
|
|
|
'Well': default_items['Well'], |
72
|
|
|
'Curves': default_items['Curves'], |
73
|
|
|
'Parameter': default_items['Parameter'], |
74
|
|
|
'Other': str(default_items['Other']), |
75
|
|
|
} |
76
|
|
|
|
77
|
|
|
if not (file_ref is None): |
78
|
|
|
self.read(file_ref, **read_kwargs) |
79
|
|
|
|
80
|
|
|
def read(self, file_ref, |
81
|
|
|
ignore_data=False, read_policy='default', null_policy='strict', |
82
|
|
|
ignore_header_errors=False, mnemonic_case='upper', |
83
|
|
|
**kwargs): |
84
|
|
|
'''Read a LAS file. |
85
|
|
|
|
86
|
|
|
Arguments: |
87
|
|
|
file_ref (file-like object, str): either a filename, an open file |
88
|
|
|
object, or a string containing the contents of a file. |
89
|
|
|
|
90
|
|
|
Keyword Arguments: |
91
|
|
|
null_policy (str or list): see |
92
|
|
|
http://lasio.readthedocs.io/en/latest/data-section.html#handling-invalid-data-indicators-automatically |
93
|
|
|
ignore_data (bool): if True, do not read in any of the actual data, |
94
|
|
|
just the header metadata. False by default. |
95
|
|
|
ignore_header_errors (bool): ignore LASHeaderErrors (False by |
96
|
|
|
default) |
97
|
|
|
mnemonic_case (str): 'preserve': keep the case of HeaderItem mnemonics |
98
|
|
|
'upper': convert all HeaderItem mnemonics to uppercase |
99
|
|
|
'lower': convert all HeaderItem mnemonics to lowercase |
100
|
|
|
|
101
|
|
|
See :func:`lasio.reader.open_with_codecs` for additional keyword |
102
|
|
|
arguments which help to manage issues relate to character encodings. |
103
|
|
|
|
104
|
|
|
''' |
105
|
|
|
|
106
|
|
|
file_obj, self.encoding = reader.open_file(file_ref, **kwargs) |
107
|
|
|
|
108
|
|
|
regexp_subs, value_null_subs, version_NULL = reader.get_substitutions( |
109
|
|
|
read_policy, null_policy) |
110
|
|
|
|
111
|
|
|
try: |
112
|
|
|
self.raw_sections = reader.read_file_contents( |
113
|
|
|
file_obj, regexp_subs, value_null_subs, ignore_data=ignore_data, ) |
114
|
|
|
finally: |
115
|
|
|
if hasattr(file_obj, "close"): |
116
|
|
|
file_obj.close() |
117
|
|
|
|
118
|
|
|
if len(self.raw_sections) == 0: |
119
|
|
|
raise KeyError('No ~ sections found. Is this a LAS file?') |
120
|
|
|
|
121
|
|
|
def add_section(pattern, name, **sect_kws): |
122
|
|
|
raw_section = self.match_raw_section(pattern) |
123
|
|
|
drop = [] |
124
|
|
|
if raw_section: |
125
|
|
|
self.sections[name] = reader.parse_header_section(raw_section, |
126
|
|
|
**sect_kws) |
127
|
|
|
drop.append(raw_section["title"]) |
128
|
|
|
else: |
129
|
|
|
logger.warning("Header section %s regexp=%s was not found." |
130
|
|
|
% (name, pattern)) |
131
|
|
|
for key in drop: |
132
|
|
|
self.raw_sections.pop(key) |
133
|
|
|
|
134
|
|
|
add_section("~V", "Version", version=1.2, |
135
|
|
|
ignore_header_errors=ignore_header_errors, |
136
|
|
|
mnemonic_case=mnemonic_case) |
137
|
|
|
|
138
|
|
|
# Establish version and wrap values if possible. |
139
|
|
|
|
140
|
|
|
try: |
141
|
|
|
version = self.version['VERS'].value |
142
|
|
|
except KeyError: |
143
|
|
|
logger.warning('VERS item not found in the ~V section.') |
144
|
|
|
version = None |
145
|
|
|
|
146
|
|
|
try: |
147
|
|
|
wrap = self.version['WRAP'].value |
148
|
|
|
except KeyError: |
149
|
|
|
logger.warning('WRAP item not found in the ~V section') |
150
|
|
|
wrap = None |
151
|
|
|
|
152
|
|
|
# Validate version. |
153
|
|
|
# |
154
|
|
|
# If VERS was missing and version = None, then the file will be read in |
155
|
|
|
# as if version were 2.0. But there will be no VERS HeaderItem, meaning |
156
|
|
|
# that las.write(..., version=None) will fail with a KeyError. But |
157
|
|
|
# las.write(..., version=1.2) will work because a new VERS HeaderItem |
158
|
|
|
# will be created. |
159
|
|
|
|
160
|
|
|
try: |
161
|
|
|
assert version in (1.2, 2, None) |
162
|
|
|
except AssertionError: |
163
|
|
|
if version < 2: |
164
|
|
|
version = 1.2 |
165
|
|
|
else: |
166
|
|
|
version = 2 |
167
|
|
|
else: |
168
|
|
|
if version is None: |
169
|
|
|
logger.info('Assuming that LAS VERS is 2.0') |
170
|
|
|
version = 2 |
171
|
|
|
|
172
|
|
|
add_section("~W", "Well", version=version, |
173
|
|
|
ignore_header_errors=ignore_header_errors, |
174
|
|
|
mnemonic_case=mnemonic_case) |
175
|
|
|
|
176
|
|
|
# Establish NULL value if possible. |
177
|
|
|
|
178
|
|
|
try: |
179
|
|
|
null = self.well['NULL'].value |
180
|
|
|
except KeyError: |
181
|
|
|
logger.warning('NULL item not found in the ~W section') |
182
|
|
|
null = None |
183
|
|
|
|
184
|
|
|
add_section("~C", "Curves", version=version, |
185
|
|
|
ignore_header_errors=ignore_header_errors, |
186
|
|
|
mnemonic_case=mnemonic_case) |
187
|
|
|
add_section("~P", "Parameter", version=version, |
188
|
|
|
ignore_header_errors=ignore_header_errors, |
189
|
|
|
mnemonic_case=mnemonic_case) |
190
|
|
|
s = self.match_raw_section("~O") |
191
|
|
|
|
192
|
|
|
drop = [] |
193
|
|
|
if s: |
194
|
|
|
self.sections["Other"] = "\n".join(s["lines"]) |
195
|
|
|
drop.append(s["title"]) |
196
|
|
|
for key in drop: |
197
|
|
|
self.raw_sections.pop(key) |
198
|
|
|
|
199
|
|
|
# Deal with nonstandard sections that some operators and/or |
200
|
|
|
# service companies (eg IHS) insist on adding. |
201
|
|
|
drop = [] |
202
|
|
|
for s in self.raw_sections.values(): |
203
|
|
|
if s["section_type"] == "header": |
204
|
|
|
logger.warning('Found nonstandard LAS section: ' + s["title"]) |
205
|
|
|
self.sections[s["title"][1:]] = "\n".join(s["lines"]) |
206
|
|
|
drop.append(s["title"]) |
207
|
|
|
for key in drop: |
208
|
|
|
self.raw_sections.pop(key) |
209
|
|
|
|
210
|
|
|
if not ignore_data: |
211
|
|
|
drop = [] |
212
|
|
|
s = self.match_raw_section("~A") |
213
|
|
|
s_valid = True |
214
|
|
|
if s is None: |
215
|
|
|
logger.warning("No data section (regexp='~A') found") |
216
|
|
|
s_valid = False |
217
|
|
|
try: |
218
|
|
|
if s['ncols'] is None: |
219
|
|
|
logger.warning('No numerical data found inside ~A section') |
220
|
|
|
s_valid = False |
221
|
|
|
except: |
222
|
|
|
pass |
223
|
|
|
|
224
|
|
|
if s_valid: |
225
|
|
|
arr = s["array"] |
226
|
|
|
logger.debug('~A data.shape {}'.format(arr.shape)) |
227
|
|
|
if version_NULL: |
228
|
|
|
arr[arr == null] = np.nan |
229
|
|
|
logger.debug('~A after NULL replacement data.shape {}'.format(arr.shape)) |
230
|
|
|
|
231
|
|
|
n_curves = len(self.curves) |
232
|
|
|
n_arr_cols = len(self.curves) # provisional pending below check |
233
|
|
|
logger.debug("n_curves=%d ncols=%d" % (n_curves, s["ncols"])) |
234
|
|
|
if wrap == "NO": |
235
|
|
|
if s["ncols"] > n_curves: |
236
|
|
|
n_arr_cols = s["ncols"] |
237
|
|
|
data = np.reshape(arr, (-1, n_arr_cols)) |
238
|
|
|
|
239
|
|
|
self.set_data(data, truncate=False) |
240
|
|
|
drop.append(s["title"]) |
241
|
|
|
for key in drop: |
242
|
|
|
self.raw_sections.pop(key) |
243
|
|
|
|
244
|
|
|
check_units_on = [] |
245
|
|
|
for mnemonic in ('STRT', 'STOP', 'STEP'): |
246
|
|
|
if mnemonic in self.well: |
247
|
|
|
check_units_on.append(self.well[mnemonic]) |
248
|
|
|
if len(self.curves) > 0: |
249
|
|
|
check_units_on.append(self.curves[0]) |
250
|
|
|
for index_unit, possibilities in defaults.DEPTH_UNITS.items(): |
251
|
|
|
if all(i.unit.upper() in possibilities for i in check_units_on): |
252
|
|
|
self.index_unit = index_unit |
253
|
|
|
|
254
|
|
|
def write(self, file_ref, **kwargs): |
255
|
|
|
'''Write LAS file to disk. |
256
|
|
|
|
257
|
|
|
Arguments: |
258
|
|
|
file_ref (open file-like object or str): a file-like object opening |
259
|
|
|
for writing, or a filename. |
260
|
|
|
|
261
|
|
|
All ``**kwargs`` are passed to :func:`lasio.writer.write` -- please |
262
|
|
|
check the docstring of that function for more keyword arguments you can |
263
|
|
|
use here! |
264
|
|
|
|
265
|
|
|
Examples: |
266
|
|
|
|
267
|
|
|
>>> with open('test_output.las', mode='w') as f: |
268
|
|
|
... lasfile_obj.write(f, version=2.0) # <-- this method |
269
|
|
|
|
270
|
|
|
''' |
271
|
|
|
opened_file = False |
272
|
|
|
if isinstance(file_ref, basestring) and not hasattr(file_ref, "write"): |
273
|
|
|
opened_file = True |
274
|
|
|
file_ref = open(file_ref, "w") |
275
|
|
|
writer.write(self, file_ref, **kwargs) |
276
|
|
|
if opened_file: |
277
|
|
|
file_ref.close() |
278
|
|
|
|
279
|
|
|
def to_excel(self, filename): |
280
|
|
|
'''Export LAS file to a Microsoft Excel workbook. |
281
|
|
|
|
282
|
|
|
This function will raise an :exc:`ImportError` if ``openpyxl`` is not |
283
|
|
|
installed. |
284
|
|
|
|
285
|
|
|
Arguments: |
286
|
|
|
filename (str) |
287
|
|
|
|
288
|
|
|
''' |
289
|
|
|
from . import excel |
290
|
|
|
converter = excel.ExcelConverter(self) |
291
|
|
|
converter.write(filename) |
292
|
|
|
|
293
|
|
|
def to_csv(self, file_ref, mnemonics=True, units=True, units_loc='line', **kwargs): |
294
|
|
|
'''Export to a CSV file. |
295
|
|
|
|
296
|
|
|
Arguments: |
297
|
|
|
file_ref (open file-like object or str): a file-like object opening |
298
|
|
|
for writing, or a filename. |
299
|
|
|
|
300
|
|
|
Keyword Arguments: |
301
|
|
|
mnemonics (list, True, False): write mnemonics as a header line at the |
302
|
|
|
start. If list, use the supplied items as mnemonics. If True, |
303
|
|
|
use the curve mnemonics. |
304
|
|
|
units (list, True, False): as for mnemonics. |
305
|
|
|
units_loc (str or None): either 'line', '[]' or '()'. 'line' will put |
306
|
|
|
units on the line following the mnemonics (good for WellCAD). |
307
|
|
|
'[]' and '()' will put the units in either brackets or |
308
|
|
|
parentheses following the mnemonics, on the single header line |
309
|
|
|
(better for Excel) |
310
|
|
|
**kwargs: passed to :class:`csv.writer`. Note that if |
311
|
|
|
``lineterminator`` is **not** specified here, then it will be |
312
|
|
|
sent to :class:`csv.writer` as ``lineterminator='\\n'``. |
313
|
|
|
|
314
|
|
|
''' |
315
|
|
|
opened_file = False |
316
|
|
|
if isinstance(file_ref, basestring) and not hasattr(file_ref, "write"): |
317
|
|
|
opened_file = True |
318
|
|
|
file_ref = open(file_ref, "w") |
319
|
|
|
|
320
|
|
|
if not 'lineterminator' in kwargs: |
321
|
|
|
kwargs['lineterminator'] = '\n' |
322
|
|
|
writer = csv.writer(file_ref, **kwargs) |
323
|
|
|
|
324
|
|
|
if mnemonics is True: |
325
|
|
|
mnemonics = [c.original_mnemonic for c in self.curves] |
326
|
|
|
if units is True: |
327
|
|
|
units = [c.unit for c in self.curves] |
328
|
|
|
|
329
|
|
|
if mnemonics: |
330
|
|
|
if units_loc in ('()', '[]') and units: |
331
|
|
|
mnemonics = [ |
332
|
|
|
m + ' ' + units_loc[0] + u + units_loc[1] |
333
|
|
|
for m, u in zip(mnemonics, units)] |
334
|
|
|
writer.writerow(mnemonics) |
335
|
|
|
if units: |
336
|
|
|
if units_loc == 'line': |
337
|
|
|
writer.writerow(units) |
338
|
|
|
|
339
|
|
|
for i in range(self.data.shape[0]): |
340
|
|
|
writer.writerow(self.data[i, :]) |
341
|
|
|
|
342
|
|
|
if opened_file: |
343
|
|
|
file_ref.close() |
344
|
|
|
|
345
|
|
|
def match_raw_section(self, pattern, re_func="match", flags=re.IGNORECASE): |
346
|
|
|
'''Find raw section with a regular expression. |
347
|
|
|
|
348
|
|
|
Arguments: |
349
|
|
|
pattern (str): regular expression (you need to include the tilde) |
350
|
|
|
|
351
|
|
|
Keyword Arguments: |
352
|
|
|
re_func (str): either "match" or "search", see python ``re`` module. |
353
|
|
|
flags (int): flags for :func:`re.compile` |
354
|
|
|
|
355
|
|
|
Returns: |
356
|
|
|
dict |
357
|
|
|
|
358
|
|
|
Intended for internal use only. |
359
|
|
|
|
360
|
|
|
''' |
361
|
|
|
for title in self.raw_sections.keys(): |
362
|
|
|
title = title.strip() |
363
|
|
|
p = re.compile(pattern, flags=flags) |
364
|
|
|
if re_func == "match": |
365
|
|
|
re_func = re.match |
366
|
|
|
elif re_func == "search": |
367
|
|
|
re_func == re.search |
368
|
|
|
m = re_func(p, title) |
369
|
|
|
if m: |
370
|
|
|
return self.raw_sections[title] |
371
|
|
|
|
372
|
|
|
def get_curve(self, mnemonic): |
373
|
|
|
'''Return CurveItem object. |
374
|
|
|
|
375
|
|
|
Arguments: |
376
|
|
|
mnemonic (str): the name of the curve |
377
|
|
|
|
378
|
|
|
Returns: |
379
|
|
|
:class:`lasio.las_items.CurveItem` (not just the data array) |
380
|
|
|
|
381
|
|
|
''' |
382
|
|
|
for curve in self.curves: |
383
|
|
|
if curve.mnemonic == mnemonic: |
384
|
|
|
return curve |
385
|
|
|
|
386
|
|
|
def __getitem__(self, key): |
387
|
|
|
'''Provide access to curve data. |
388
|
|
|
|
389
|
|
|
Arguments: |
390
|
|
|
key (str, int): either a curve mnemonic or the column index. |
391
|
|
|
|
392
|
|
|
Returns: |
393
|
|
|
1D :class:`numpy.ndarray` (the data for the curve) |
394
|
|
|
|
395
|
|
|
''' |
396
|
|
|
#TODO: If I implement 2D arrays, need to check here for :1 :2 :3 etc. |
397
|
|
|
curve_mnemonics = [c.mnemonic for c in self.curves] |
398
|
|
|
if isinstance(key, int): |
399
|
|
|
return self.curves[key].data |
400
|
|
|
elif key in curve_mnemonics: |
401
|
|
|
return self.curves[key].data |
402
|
|
|
else: |
403
|
|
|
raise KeyError('{} not found in curves ({})'.format(key, curve_mnemonics)) |
404
|
|
|
|
405
|
|
|
def __setitem__(self, key, value): |
406
|
|
|
'''Append a curve. |
407
|
|
|
|
408
|
|
|
Arguments: |
409
|
|
|
key (str): the curve mnemonic |
410
|
|
|
value (1D data or CurveItem): either the curve data, or a CurveItem |
411
|
|
|
|
412
|
|
|
See :meth:`lasio.las.LASFile.append_curve_item` or |
413
|
|
|
:meth:`lasio.las.LASFile.append_curve` for more details. |
414
|
|
|
|
415
|
|
|
''' |
416
|
|
|
if isinstance(value, CurveItem): |
417
|
|
|
if key != value.mnemonic: |
418
|
|
|
raise KeyError('key {} does not match value.mnemonic {}'.format( |
419
|
|
|
key, value.mnemonic)) |
420
|
|
|
self.append_curve_item(value) |
421
|
|
|
else: |
422
|
|
|
# Assume value is an ndarray |
423
|
|
|
self.append_curve(key, value) |
424
|
|
|
|
425
|
|
|
def keys(self): |
426
|
|
|
'''Return curve mnemonics.''' |
427
|
|
|
return [c.mnemonic for c in self.curves] |
428
|
|
|
|
429
|
|
|
def values(self): |
430
|
|
|
'''Return data for each curve.''' |
431
|
|
|
return [c.data for c in self.curves] |
432
|
|
|
|
433
|
|
|
def items(self): |
434
|
|
|
'''Return mnemonics and data for all curves.''' |
435
|
|
|
return [(c.mnemonic, c.data) for c in self.curves] |
436
|
|
|
|
437
|
|
|
def iterkeys(self): |
438
|
|
|
return iter(list(self.keys())) |
439
|
|
|
|
440
|
|
|
def itervalues(self): |
441
|
|
|
return iter(list(self.values())) |
442
|
|
|
|
443
|
|
|
def iteritems(self): |
444
|
|
|
return iter(list(self.items())) |
445
|
|
|
|
446
|
|
|
@property |
447
|
|
|
def version(self): |
448
|
|
|
'''Header information from the Version (~V) section. |
449
|
|
|
|
450
|
|
|
Returns: |
451
|
|
|
:class:`lasio.las_items.SectionItems` object. |
452
|
|
|
|
453
|
|
|
''' |
454
|
|
|
return self.sections['Version'] |
455
|
|
|
|
456
|
|
|
@version.setter |
457
|
|
|
def version(self, section): |
458
|
|
|
self.sections['Version'] = section |
459
|
|
|
|
460
|
|
|
@property |
461
|
|
|
def well(self): |
462
|
|
|
'''Header information from the Well (~W) section. |
463
|
|
|
|
464
|
|
|
Returns: |
465
|
|
|
:class:`lasio.las_items.SectionItems` object. |
466
|
|
|
|
467
|
|
|
''' |
468
|
|
|
return self.sections['Well'] |
469
|
|
|
|
470
|
|
|
@well.setter |
471
|
|
|
def well(self, section): |
472
|
|
|
self.sections['Well'] = section |
473
|
|
|
|
474
|
|
|
@property |
475
|
|
|
def curves(self): |
476
|
|
|
'''Curve information and data from the Curves (~C) and data section.. |
477
|
|
|
|
478
|
|
|
Returns: |
479
|
|
|
:class:`lasio.las_items.SectionItems` object. |
480
|
|
|
|
481
|
|
|
''' |
482
|
|
|
return self.sections['Curves'] |
483
|
|
|
|
484
|
|
|
@curves.setter |
485
|
|
|
def curves(self, section): |
486
|
|
|
self.sections['Curves'] = section |
487
|
|
|
|
488
|
|
|
@property |
489
|
|
|
def curvesdict(self): |
490
|
|
|
'''Curve information and data from the Curves (~C) and data section.. |
491
|
|
|
|
492
|
|
|
Returns: |
493
|
|
|
dict |
494
|
|
|
|
495
|
|
|
''' |
496
|
|
|
d = {} |
497
|
|
|
for curve in self.curves: |
498
|
|
|
d[curve['mnemonic']] = curve |
499
|
|
|
return d |
500
|
|
|
|
501
|
|
|
@property |
502
|
|
|
def params(self): |
503
|
|
|
'''Header information from the Parameter (~P) section. |
504
|
|
|
|
505
|
|
|
Returns: |
506
|
|
|
:class:`lasio.las_items.SectionItems` object. |
507
|
|
|
|
508
|
|
|
''' |
509
|
|
|
return self.sections['Parameter'] |
510
|
|
|
|
511
|
|
|
@params.setter |
512
|
|
|
def params(self, section): |
513
|
|
|
self.sections['Parameter'] = section |
514
|
|
|
|
515
|
|
|
@property |
516
|
|
|
def other(self): |
517
|
|
|
'''Header information from the Other (~O) section. |
518
|
|
|
|
519
|
|
|
Returns: |
520
|
|
|
str |
521
|
|
|
|
522
|
|
|
''' |
523
|
|
|
return self.sections['Other'] |
524
|
|
|
|
525
|
|
|
@other.setter |
526
|
|
|
def other(self, section): |
527
|
|
|
self.sections['Other'] = section |
528
|
|
|
|
529
|
|
|
@property |
530
|
|
|
def metadata(self): |
531
|
|
|
'''All header information joined together. |
532
|
|
|
|
533
|
|
|
Returns: |
534
|
|
|
:class:`lasio.las_items.SectionItems` object. |
535
|
|
|
|
536
|
|
|
''' |
537
|
|
|
s = SectionItems() |
538
|
|
|
for section in self.sections: |
539
|
|
|
for item in section: |
540
|
|
|
s.append(item) |
541
|
|
|
return s |
542
|
|
|
|
543
|
|
|
@metadata.setter |
544
|
|
|
def metadata(self, value): |
545
|
|
|
raise NotImplementedError('Set values in the section directly') |
546
|
|
|
|
547
|
|
|
@property |
548
|
|
|
def header(self): |
549
|
|
|
'''All header information |
550
|
|
|
|
551
|
|
|
Returns: |
552
|
|
|
dict |
553
|
|
|
|
554
|
|
|
''' |
555
|
|
|
return self.sections |
556
|
|
|
|
557
|
|
|
def df(self): |
558
|
|
|
'''Return data as a :class:`pandas.DataFrame` structure.''' |
559
|
|
|
import pandas as pd |
560
|
|
|
df = pd.DataFrame(self.data, columns=[c.mnemonic for c in self.curves]) |
561
|
|
|
if len(self.curves) > 0: |
562
|
|
|
df = df.set_index(self.curves[0].mnemonic) |
563
|
|
|
return df |
564
|
|
|
|
565
|
|
|
@property |
566
|
|
|
def data(self): |
567
|
|
|
return np.vstack([c.data for c in self.curves]).T |
568
|
|
|
|
569
|
|
|
@data.setter |
570
|
|
|
def data(self, value): |
571
|
|
|
return self.set_data(value) |
572
|
|
|
|
573
|
|
|
def set_data(self, array_like, names=None, truncate=False): |
574
|
|
|
'''Set the data for the LAS; actually sets data on individual curves. |
575
|
|
|
|
576
|
|
|
Arguments: |
577
|
|
|
array_like (array_like or :class:`pandas.DataFrame`): 2-D data array |
578
|
|
|
|
579
|
|
|
Keyword Arguments: |
580
|
|
|
names (list, optional): used to replace the names of the existing |
581
|
|
|
:class:`lasio.las_items.CurveItem` objects. |
582
|
|
|
truncate (bool): remove any columns which are not included in the |
583
|
|
|
Curves (~C) section. |
584
|
|
|
|
585
|
|
|
Note: you can pass a :class:`pandas.DataFrame` to this method. |
586
|
|
|
|
587
|
|
|
''' |
588
|
|
|
try: |
589
|
|
|
import pandas as pd |
590
|
|
|
except ImportError: |
591
|
|
|
pass |
592
|
|
|
else: |
593
|
|
|
if isinstance(array_like, pd.DataFrame): |
594
|
|
|
return self.set_data_from_df( |
595
|
|
|
array_like, **dict(names=names, truncate=False)) |
596
|
|
|
data = np.asarray(array_like) |
597
|
|
|
|
598
|
|
|
# Truncate data array if necessary. |
599
|
|
|
if truncate: |
600
|
|
|
data = data[:, len(self.curves)] |
601
|
|
|
|
602
|
|
|
# Extend curves list if necessary. |
603
|
|
|
while data.shape[1] > len(self.curves): |
604
|
|
|
self.curves.append(CurveItem('')) |
605
|
|
|
|
606
|
|
|
if not names: |
607
|
|
|
names = [c.original_mnemonic for c in self.curves] |
608
|
|
|
else: |
609
|
|
|
# Extend names list if necessary. |
610
|
|
|
while len(self.curves) > len(names): |
611
|
|
|
names.append('') |
612
|
|
|
logger.debug('set_data. names to use: {}'.format(names)) |
613
|
|
|
|
614
|
|
|
for i, curve in enumerate(self.curves): |
615
|
|
|
curve.mnemonic = names[i] |
616
|
|
|
curve.data = data[:, i] |
617
|
|
|
|
618
|
|
|
self.curves.assign_duplicate_suffixes() |
619
|
|
|
|
620
|
|
|
def set_data_from_df(self, df, **kwargs): |
621
|
|
|
'''Set the LAS file data from a :class:`pandas.DataFrame`. |
622
|
|
|
|
623
|
|
|
Arguments: |
624
|
|
|
df (pandas.DataFrame): curve mnemonics are the column names. |
625
|
|
|
|
626
|
|
|
Keyword arguments are passed to :meth:`lasio.las.LASFile.set_data`. |
627
|
|
|
|
628
|
|
|
''' |
629
|
|
|
df_values = np.vstack([df.index.values, df.values.T]).T |
630
|
|
|
if (not 'names' in kwargs) or (not kwargs['names']): |
631
|
|
|
kwargs['names'] = [df.index.name] + [str(name) for name in df.columns.values] |
632
|
|
|
self.set_data(df_values, **kwargs) |
633
|
|
|
|
634
|
|
|
@property |
635
|
|
|
def index(self): |
636
|
|
|
'''Return data from the first column of the LAS file data (depth/time). |
637
|
|
|
|
638
|
|
|
''' |
639
|
|
|
return self.curves[0].data |
640
|
|
|
|
641
|
|
|
@property |
642
|
|
|
def depth_m(self): |
643
|
|
|
'''Return the index as metres.''' |
644
|
|
|
if self.index_unit == 'M': |
645
|
|
|
return self.index |
646
|
|
|
elif self.index_unit == 'FT': |
647
|
|
|
return self.index * 0.3048 |
648
|
|
|
else: |
649
|
|
|
raise exceptions.LASUnknownUnitError( |
650
|
|
|
'Unit of depth index not known') |
651
|
|
|
|
652
|
|
|
@property |
653
|
|
|
def depth_ft(self): |
654
|
|
|
'''Return the index as feet.''' |
655
|
|
|
if self.index_unit == 'M': |
656
|
|
|
return self.index / 0.3048 |
657
|
|
|
elif self.index_unit == 'FT': |
658
|
|
|
return self.index |
659
|
|
|
else: |
660
|
|
|
raise exceptions.LASUnknownUnitError( |
661
|
|
|
'Unit of depth index not known') |
662
|
|
|
|
663
|
|
|
def add_curve_raw(self, mnemonic, data, unit='', descr='', value=''): |
664
|
|
|
'''Deprecated. Use append_curve_item() or insert_curve_item() instead.''' |
665
|
|
|
return self.append_curve_item(self, mnemonic, data, unit, descr, value) |
666
|
|
|
|
667
|
|
|
def append_curve_item(self, curve_item): |
668
|
|
|
'''Add a CurveItem. |
669
|
|
|
|
670
|
|
|
Args: |
671
|
|
|
curve_item (lasio.CurveItem) |
672
|
|
|
|
673
|
|
|
''' |
674
|
|
|
self.insert_curve_item(len(self.curves), curve_item) |
675
|
|
|
|
676
|
|
|
def insert_curve_item(self, ix, curve_item): |
677
|
|
|
'''Insert a CurveItem. |
678
|
|
|
|
679
|
|
|
Args: |
680
|
|
|
ix (int): position to insert CurveItem i.e. 0 for start |
681
|
|
|
curve_item (lasio.CurveItem) |
682
|
|
|
|
683
|
|
|
''' |
684
|
|
|
assert isinstance(curve_item, CurveItem) |
685
|
|
|
self.curves.insert(ix, curve_item) |
686
|
|
|
|
687
|
|
|
def add_curve(self, *args, **kwargs): |
688
|
|
|
'''Deprecated. Use append_curve() or insert_curve() instead.''' |
689
|
|
|
return self.append_curve(*args, **kwargs) |
690
|
|
|
|
691
|
|
|
def append_curve(self, mnemonic, data, unit='', descr='', value=''): |
692
|
|
|
'''Add a curve. |
693
|
|
|
|
694
|
|
|
Arguments: |
695
|
|
|
mnemonic (str): the curve mnemonic |
696
|
|
|
data (1D ndarray): the curve data |
697
|
|
|
|
698
|
|
|
Keyword Arguments: |
699
|
|
|
unit (str): curve unit |
700
|
|
|
descr (str): curve description |
701
|
|
|
value (int/float/str): value e.g. API code. |
702
|
|
|
|
703
|
|
|
''' |
704
|
|
|
return self.insert_curve(len(self.curves), mnemonic, data, unit, descr, value) |
705
|
|
|
|
706
|
|
|
def insert_curve(self, ix, mnemonic, data, unit='', descr='', value=''): |
707
|
|
|
'''Insert a curve. |
708
|
|
|
|
709
|
|
|
Arguments: |
710
|
|
|
ix (int): position to insert curve at i.e. 0 for start. |
711
|
|
|
mnemonic (str): the curve mnemonic |
712
|
|
|
data (1D ndarray): the curve data |
713
|
|
|
|
714
|
|
|
Keyword Arguments: |
715
|
|
|
unit (str): curve unit |
716
|
|
|
descr (str): curve description |
717
|
|
|
value (int/float/str): value e.g. API code. |
718
|
|
|
|
719
|
|
|
''' |
720
|
|
|
curve = CurveItem(mnemonic, unit, value, descr, data) |
721
|
|
|
self.insert_curve_item(ix, curve) |
722
|
|
|
|
723
|
|
|
def delete_curve(self, mnemonic=None, ix=None): |
724
|
|
|
'''Delete a curve. |
725
|
|
|
|
726
|
|
|
Keyword Arguments: |
727
|
|
|
ix (int): index of curve in LASFile.curves. |
728
|
|
|
mnemonic (str): mnemonic of curve. |
729
|
|
|
|
730
|
|
|
The index takes precedence over the mnemonic. |
731
|
|
|
|
732
|
|
|
''' |
733
|
|
|
if ix is None: |
734
|
|
|
ix = self.curves.keys().index(mnemonic) |
735
|
|
|
self.curves.pop(ix) |
736
|
|
|
|
737
|
|
|
@property |
738
|
|
|
def json(self): |
739
|
|
|
'''Return object contents as a JSON string.''' |
740
|
|
|
obj = OrderedDict() |
741
|
|
|
for name, section in self.sections.items(): |
742
|
|
|
try: |
743
|
|
|
obj[name] = section.json |
744
|
|
|
except AttributeError: |
745
|
|
|
obj[name] = json.dumps(section) |
746
|
|
|
return json.dumps(obj) |
747
|
|
|
|
748
|
|
|
@json.setter |
749
|
|
|
def json(self, value): |
750
|
|
|
raise Exception('Cannot set objects from JSON') |
751
|
|
|
|
752
|
|
|
|
753
|
|
|
|
754
|
|
|
class Las(LASFile): |
755
|
|
|
|
756
|
|
|
'''LAS file object. |
757
|
|
|
|
758
|
|
|
Retained for backwards compatibility. |
759
|
|
|
|
760
|
|
|
''' |
761
|
|
|
pass |
762
|
|
|
|
763
|
|
|
|
764
|
|
|
class JSONEncoder(json.JSONEncoder): |
765
|
|
|
|
766
|
|
|
def default(self, obj): |
767
|
|
|
if isinstance(obj, LASFile): |
768
|
|
|
d = {'metadata': {}, |
769
|
|
|
'data': {}} |
770
|
|
|
for name, section in obj.sections.items(): |
771
|
|
|
if isinstance(section, basestring): |
772
|
|
|
d['metadata'][name] = section |
773
|
|
|
else: |
774
|
|
|
d['metadata'][name] = [] |
775
|
|
|
for item in section: |
776
|
|
|
d['metadata'][name].append(dict(item)) |
777
|
|
|
for curve in obj.curves: |
778
|
|
|
d['data'][curve.mnemonic] = list(curve.data) |
779
|
|
|
return d |
780
|
|
|
|