1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
use RandomLibTest\Mocks\Random\Mixer; |
4
|
|
|
use RandomLibTest\Mocks\Random\Source; |
5
|
|
|
|
6
|
|
|
use RandomLib\Generator; |
7
|
|
|
|
8
|
|
|
class Vectors_Random_GeneratorTest extends PHPUnit_Framework_TestCase { |
9
|
|
|
|
10
|
|
|
public static function provideGenerateInt() { |
11
|
|
|
return array( |
12
|
|
|
// First, lets test each offset based range |
13
|
|
|
array(0, 7), |
14
|
|
|
array(0, 15), |
15
|
|
|
array(0, 31), |
16
|
|
|
array(0, 63), |
17
|
|
|
array(0, 127), |
18
|
|
|
array(0, 255), |
19
|
|
|
array(0, 511), |
20
|
|
|
array(0, 1023), |
21
|
|
|
// Let's try a range not starting at 0 |
22
|
|
|
array(8, 15), |
23
|
|
|
// Let's try a range with a negative number |
24
|
|
|
array(-18, -11), |
25
|
|
|
// Let's try a non-power-of-2 range |
26
|
|
|
array(10, 100), |
27
|
|
|
// Finally, let's try two large numbers |
28
|
|
|
array(100000, 100007), |
29
|
|
|
array(100000000, 100002047), |
30
|
|
|
// Now, let's force a few loops by setting a valid offset |
31
|
|
|
array(0, 5, 2), |
32
|
|
|
array(0, 9, 5), |
33
|
|
|
array(0, 27, 4), |
34
|
|
|
); |
35
|
|
|
} |
36
|
|
|
|
37
|
|
|
public static function provideGenerators() { |
38
|
|
|
$factory = new \RandomLib\Factory; |
39
|
|
|
$generator = $factory->getLowStrengthGenerator(); |
40
|
|
|
$sources = $generator->getSources(); |
41
|
|
|
$ret = array(); |
42
|
|
|
|
43
|
|
|
$ret[] = array(new Generator($sources, new \RandomLib\Mixer\Hash), 10000, 'hash'); |
44
|
|
|
return $ret; |
45
|
|
|
} |
46
|
|
|
|
47
|
|
|
/** |
48
|
|
|
* This test asserts that the algorithm that generates the integers does not |
49
|
|
|
* actually introduce any bias into the generated numbers. If this test |
50
|
|
|
* passes, the generated integers from the generator will be as unbiased as |
51
|
|
|
* the sources that provide the data. |
52
|
|
|
* |
53
|
|
|
* @dataProvider provideGenerateInt |
54
|
|
|
*/ |
55
|
|
|
public function testGenerateInt($min, $max, $offset = 0) { |
56
|
|
|
$generator = $this->getGenerator($max - $min + $offset); |
57
|
|
|
for ($i = $max; $i >= $min; $i--) { |
58
|
|
|
$this->assertEquals($i, $generator->generateInt($min, $max)); |
59
|
|
|
} |
60
|
|
|
} |
61
|
|
|
|
62
|
|
|
/** |
63
|
|
|
* This generator generates two bytes at a time, and uses each 8 bit segment of |
64
|
|
|
* the generated byte as a coordinate on a grid (so 01011010 would be the |
65
|
|
|
* coordinate (0101, 1010) or (5, 10). These are used as inputs to a MonteCarlo |
66
|
|
|
* algorithm for the integral of y=x over a 15x15 grid. The expected answer is |
67
|
|
|
* 1/2 * 15 * 15 (or 1/2 * base * height, since the result is a triangle). |
68
|
|
|
* Therefore, if we get an answer close to that, we know the generator is good. |
69
|
|
|
* |
70
|
|
|
* Now, since the area under the line should be equal to the area above the line. |
71
|
|
|
* Therefore, the ratio of the two areas should be equal. This way, we can avoid |
72
|
|
|
* computing total to figure out the areas. |
73
|
|
|
* |
74
|
|
|
* I have set the bounds on the test to be 80% and 120%. Meaning that I will |
75
|
|
|
* consider the test valid and unbiased if the number of random elements that |
76
|
|
|
* fall under (inside) of the line and the number that fall outside of the line |
77
|
|
|
* are at most 20% apart. |
78
|
|
|
* |
79
|
|
|
* Since testing randomness is not reliable or repeatable, I will only fail the |
80
|
|
|
* test in two different scenarios. The first is if after the iterations the |
81
|
|
|
* outside or the inside is 0. The chances of that happening are so low that |
82
|
|
|
* if it happens, it's relatively safe to assume that something bad happened. The |
83
|
|
|
* second scenario happens when the ratio is outside of the 20% tolerance. If |
84
|
|
|
* that happens, I will re-run the entire test. If that test is outside of the 20% |
85
|
|
|
* tolerance, then the test will fail |
86
|
|
|
* |
87
|
|
|
* |
88
|
|
|
* @dataProvider provideGenerators |
89
|
|
|
*/ |
90
|
|
|
public function testGenerate(\RandomLib\Generator $generator, $times) { |
91
|
|
|
$ratio = $this->doTestGenerate($generator, $times); |
92
|
|
|
if ($ratio < 0.8 || $ratio > 1.2) { |
93
|
|
|
$ratio2 = $this->doTestGenerate($generator, $times); |
94
|
|
|
if ($ratio2 > 1.2 || $ratio2 < 0.8) { |
95
|
|
|
$this->fail( |
96
|
|
|
sprintf( |
97
|
|
|
'The test failed multiple runs with final ratios %f and %f', |
98
|
|
|
$ratio, |
99
|
|
|
$ratio2 |
100
|
|
|
) |
101
|
|
|
); |
102
|
|
|
} |
103
|
|
|
} |
104
|
|
|
} |
105
|
|
|
|
106
|
|
|
protected function doTestGenerate(\RandomLib\Generator $generator, $times) { |
107
|
|
|
$inside = 0; |
108
|
|
|
$outside = 0; |
109
|
|
|
$on = 0; |
110
|
|
|
for ($i = 0; $i < $times; $i++) { |
111
|
|
|
$byte = $generator->generate(2); |
112
|
|
|
$byte = unpack('n', $byte); |
113
|
|
|
$byte = array_shift($byte); |
114
|
|
|
$xCoord = ($byte >> 8); |
115
|
|
|
$yCoord = ($byte & 0xFF); |
116
|
|
|
if ($xCoord < $yCoord) { |
117
|
|
|
$outside++; |
118
|
|
|
} elseif ($xCoord == $yCoord) { |
119
|
|
|
$on++; |
120
|
|
|
} else { |
121
|
|
|
$inside++; |
122
|
|
|
} |
123
|
|
|
} |
124
|
|
|
$this->assertGreaterThan(0, $outside, 'Outside Is 0'); |
125
|
|
|
$this->assertGreaterThan(0, $inside, 'Inside Is 0'); |
126
|
|
|
$ratio = $inside / $outside; |
127
|
|
|
return $ratio; |
128
|
|
|
} |
129
|
|
|
|
130
|
|
|
public function getGenerator($random) { |
131
|
|
|
$source1 = new Source(array( |
132
|
|
|
'generate' => function ($size) use (&$random) { |
133
|
|
|
$ret = pack('N', $random); |
134
|
|
|
$random--; |
135
|
|
|
return substr($ret, -1 * $size); |
136
|
|
|
} |
137
|
|
|
)); |
138
|
|
|
$sources = array($source1); |
139
|
|
|
$mixer = new Mixer(array( |
140
|
|
|
'mix'=> function(array $sources) { |
141
|
|
|
if (empty($sources)) return ''; |
142
|
|
|
return array_pop($sources); |
143
|
|
|
} |
144
|
|
|
)); |
145
|
|
|
return new Generator($sources, $mixer); |
146
|
|
|
} |
147
|
|
|
|
148
|
|
|
} |
149
|
|
|
|