1
|
|
|
import datetime |
2
|
|
|
|
3
|
|
|
|
4
|
|
|
class ElasticsearchStorage(object): |
5
|
|
|
def __init__(self, elasticsearch_host, elasticsearch_index, elasticsearch_doctype, logger, default_machine_id=None): |
6
|
|
|
try: |
7
|
|
|
import elasticsearch |
8
|
|
|
except ImportError as exc: |
9
|
|
|
raise ImportError(exc.args, "Please install elasticsearch or pytest-benchmark[elasticsearch]") |
10
|
|
|
self._elasticsearch_host = elasticsearch_host |
11
|
|
|
self._elasticsearch_index = elasticsearch_index |
12
|
|
|
self._elasticsearch_doctype = elasticsearch_doctype |
13
|
|
|
self._elasticsearch = elasticsearch.Elasticsearch(self._elasticsearch_host) |
14
|
|
|
self.default_machine_id = default_machine_id |
15
|
|
|
self.logger = logger |
16
|
|
|
self._cache = {} |
17
|
|
|
self._create_index() |
18
|
|
|
|
19
|
|
|
def __str__(self): |
20
|
|
|
return str(self._elasticsearch_host) |
21
|
|
|
|
22
|
|
|
@property |
23
|
|
|
def location(self): |
24
|
|
|
return str(self._elasticsearch_host) |
25
|
|
|
|
26
|
|
|
def query(self, project): |
27
|
|
|
""" |
28
|
|
|
Returns sorted records names (ids) that corresponds with globs_or_files. |
29
|
|
|
""" |
30
|
|
|
return [commit_and_time for commit_and_time, _ in self.load(project)] |
31
|
|
|
|
32
|
|
|
def load(self, project): |
33
|
|
|
""" |
34
|
|
|
Yield path and content of records that corresponds with globs_or_files |
35
|
|
|
""" |
36
|
|
|
r = self._search(project) |
37
|
|
|
groupped_data = self._group_by_commit_and_time(r["hits"]["hits"]) |
38
|
|
|
result = [(key, value) for key, value in groupped_data.items()] |
39
|
|
|
result.sort(key=lambda x: datetime.datetime.strptime(x[1]["datetime"], "%Y-%m-%dT%H:%M:%S.%f")) |
40
|
|
|
for key, data in result: |
41
|
|
|
yield key, data |
42
|
|
|
|
43
|
|
|
def _search(self, project): |
44
|
|
|
body = { |
45
|
|
|
"size": 1000, |
46
|
|
|
"sort": [ |
47
|
|
|
{ |
48
|
|
|
"datetime": { |
49
|
|
|
"order": "desc" |
50
|
|
|
} |
51
|
|
|
} |
52
|
|
|
], |
53
|
|
|
"query": { |
54
|
|
|
"bool": { |
55
|
|
|
"filter": { |
56
|
|
|
"term": { |
57
|
|
|
"commit_info.project": project |
58
|
|
|
} |
59
|
|
|
} |
60
|
|
|
} |
61
|
|
|
} |
62
|
|
|
} |
63
|
|
|
|
64
|
|
|
return self._elasticsearch.search(index=self._elasticsearch_index, doc_type=self._elasticsearch_doctype, body=body) |
65
|
|
|
|
66
|
|
|
@staticmethod |
67
|
|
|
def _benchmark_from_es_record(source_es_record): |
68
|
|
|
return {benchmark_key: source_es_record[benchmark_key] for benchmark_key in ("group", "stats", "options", "param", "name", "params", "fullname")} |
69
|
|
|
|
70
|
|
|
@staticmethod |
71
|
|
|
def _run_info_from_es_record(source_es_record): |
72
|
|
|
return {run_key: source_es_record[run_key] for run_key in ("machine_info", "commit_info", "datetime", "version")} |
73
|
|
|
|
74
|
|
|
def _group_by_commit_and_time(self, hits): |
75
|
|
|
result = {} |
76
|
|
|
for hit in hits: |
77
|
|
|
source_hit = hit["_source"] |
78
|
|
|
key = "%s_%s" % (source_hit["commit_info"]["id"], source_hit["datetime"]) |
79
|
|
|
benchmark = self._benchmark_from_es_record(source_hit) |
80
|
|
|
if key in result: |
81
|
|
|
result[key]["benchmarks"].append(benchmark) |
82
|
|
|
else: |
83
|
|
|
run_info = self._run_info_from_es_record(source_hit) |
84
|
|
|
run_info["benchmarks"] = [benchmark] |
85
|
|
|
result[key] = run_info |
86
|
|
|
return result |
87
|
|
|
|
88
|
|
|
def load_benchmarks(self, project): |
89
|
|
|
""" |
90
|
|
|
Yield benchmarks that corresponds with glob_or_files. Put path and |
91
|
|
|
source (uncommon part of path) to benchmark dict. |
92
|
|
|
""" |
93
|
|
|
r = self._search(project) |
94
|
|
|
for hit in r["hits"]["hits"]: |
95
|
|
|
yield self._benchmark_from_es_record(hit["_source"]) |
96
|
|
|
|
97
|
|
|
def save(self, document, document_id): |
98
|
|
|
self._elasticsearch.index( |
99
|
|
|
index=self._elasticsearch_index, |
100
|
|
|
doc_type=self._elasticsearch_doctype, |
101
|
|
|
body=document, |
102
|
|
|
id=document_id, |
103
|
|
|
) |
104
|
|
|
|
105
|
|
|
def _create_index(self): |
106
|
|
|
mapping = { |
107
|
|
|
"mappings": { |
108
|
|
|
"benchmark": { |
109
|
|
|
"properties": { |
110
|
|
|
"commit_info": { |
111
|
|
|
"properties": { |
112
|
|
|
"dirty": { |
113
|
|
|
"type": "boolean" |
114
|
|
|
}, |
115
|
|
|
"id": { |
116
|
|
|
"type": "string", |
117
|
|
|
"index": "not_analyzed" |
118
|
|
|
|
119
|
|
|
}, |
120
|
|
|
"project": { |
121
|
|
|
"type": "string", |
122
|
|
|
"index": "not_analyzed" |
123
|
|
|
} |
124
|
|
|
} |
125
|
|
|
}, |
126
|
|
|
"datetime": { |
127
|
|
|
"type": "date", |
128
|
|
|
"format": "strict_date_optional_time||epoch_millis" |
129
|
|
|
}, |
130
|
|
|
"name": { |
131
|
|
|
"type": "string", |
132
|
|
|
"index": "not_analyzed" |
133
|
|
|
}, |
134
|
|
|
"fullname": { |
135
|
|
|
"type": "string", |
136
|
|
|
"index": "not_analyzed" |
137
|
|
|
}, |
138
|
|
|
"version": { |
139
|
|
|
"type": "string", |
140
|
|
|
"index": "not_analyzed" |
141
|
|
|
}, |
142
|
|
|
"machine_info": { |
143
|
|
|
"properties": { |
144
|
|
|
"machine": { |
145
|
|
|
"type": "string", |
146
|
|
|
"index": "not_analyzed" |
147
|
|
|
}, |
148
|
|
|
"node": { |
149
|
|
|
"type": "string", |
150
|
|
|
"index": "not_analyzed" |
151
|
|
|
}, |
152
|
|
|
"processor": { |
153
|
|
|
"type": "string", |
154
|
|
|
"index": "not_analyzed" |
155
|
|
|
}, |
156
|
|
|
"python_build": { |
157
|
|
|
"type": "string", |
158
|
|
|
"index": "not_analyzed" |
159
|
|
|
}, |
160
|
|
|
"python_compiler": { |
161
|
|
|
"type": "string", |
162
|
|
|
"index": "not_analyzed" |
163
|
|
|
}, |
164
|
|
|
"python_implementation": { |
165
|
|
|
"type": "string", |
166
|
|
|
"index": "not_analyzed" |
167
|
|
|
}, |
168
|
|
|
"python_implementation_version": { |
169
|
|
|
"type": "string", |
170
|
|
|
"index": "not_analyzed" |
171
|
|
|
}, |
172
|
|
|
"python_version": { |
173
|
|
|
"type": "string", |
174
|
|
|
"index": "not_analyzed" |
175
|
|
|
}, |
176
|
|
|
"release": { |
177
|
|
|
"type": "string", |
178
|
|
|
"index": "not_analyzed" |
179
|
|
|
}, |
180
|
|
|
"system": { |
181
|
|
|
"type": "string", |
182
|
|
|
"index": "not_analyzed" |
183
|
|
|
} |
184
|
|
|
} |
185
|
|
|
}, |
186
|
|
|
"options": { |
187
|
|
|
"properties": { |
188
|
|
|
"disable_gc": { |
189
|
|
|
"type": "boolean" |
190
|
|
|
}, |
191
|
|
|
"max_time": { |
192
|
|
|
"type": "double" |
193
|
|
|
}, |
194
|
|
|
"min_rounds": { |
195
|
|
|
"type": "long" |
196
|
|
|
}, |
197
|
|
|
"min_time": { |
198
|
|
|
"type": "double" |
199
|
|
|
}, |
200
|
|
|
"timer": { |
201
|
|
|
"type": "string" |
202
|
|
|
}, |
203
|
|
|
"warmup": { |
204
|
|
|
"type": "boolean" |
205
|
|
|
} |
206
|
|
|
} |
207
|
|
|
}, |
208
|
|
|
"stats": { |
209
|
|
|
"properties": { |
210
|
|
|
"hd15iqr": { |
211
|
|
|
"type": "double" |
212
|
|
|
}, |
213
|
|
|
"iqr": { |
214
|
|
|
"type": "double" |
215
|
|
|
}, |
216
|
|
|
"iqr_outliers": { |
217
|
|
|
"type": "long" |
218
|
|
|
}, |
219
|
|
|
"iterations": { |
220
|
|
|
"type": "long" |
221
|
|
|
}, |
222
|
|
|
"ld15iqr": { |
223
|
|
|
"type": "double" |
224
|
|
|
}, |
225
|
|
|
"max": { |
226
|
|
|
"type": "double" |
227
|
|
|
}, |
228
|
|
|
"mean": { |
229
|
|
|
"type": "double" |
230
|
|
|
}, |
231
|
|
|
"median": { |
232
|
|
|
"type": "double" |
233
|
|
|
}, |
234
|
|
|
"min": { |
235
|
|
|
"type": "double" |
236
|
|
|
}, |
237
|
|
|
"outliers": { |
238
|
|
|
"type": "string" |
239
|
|
|
}, |
240
|
|
|
"q1": { |
241
|
|
|
"type": "double" |
242
|
|
|
}, |
243
|
|
|
"q3": { |
244
|
|
|
"type": "double" |
245
|
|
|
}, |
246
|
|
|
"rounds": { |
247
|
|
|
"type": "long" |
248
|
|
|
}, |
249
|
|
|
"stddev": { |
250
|
|
|
"type": "double" |
251
|
|
|
}, |
252
|
|
|
"stddev_outliers": { |
253
|
|
|
"type": "long" |
254
|
|
|
} |
255
|
|
|
} |
256
|
|
|
}, |
257
|
|
|
} |
258
|
|
|
} |
259
|
|
|
} |
260
|
|
|
} |
261
|
|
|
self._elasticsearch.indices.create(index=self._elasticsearch_index, ignore=400, body=mapping) |
262
|
|
|
|
263
|
|
|
|