Total Complexity | 58 |
Total Lines | 250 |
Duplicated Lines | 0 % |
Complex classes like src.pytest_benchmark.BenchmarkFixture often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | from __future__ import division |
||
29 | class BenchmarkFixture(object): |
||
30 | _precisions = {} |
||
31 | |||
32 | @classmethod |
||
33 | def _get_precision(cls, timer): |
||
34 | if timer in cls._precisions: |
||
35 | return cls._precisions[timer] |
||
36 | else: |
||
37 | return cls._precisions.setdefault(timer, compute_timer_precision(timer)) |
||
38 | |||
39 | def __init__(self, node, disable_gc, timer, min_rounds, min_time, max_time, warmup, warmup_iterations, |
||
40 | calibration_precision, add_stats, logger, warner, disabled, group=None): |
||
41 | self.name = node.name |
||
42 | self.fullname = node._nodeid |
||
43 | self.disabled = disabled |
||
44 | if hasattr(node, 'callspec'): |
||
45 | self.param = node.callspec.id |
||
46 | self.params = node.callspec.params |
||
47 | else: |
||
48 | self.param = None |
||
49 | self.params = None |
||
50 | self.group = group |
||
51 | self.has_error = False |
||
52 | |||
53 | self._disable_gc = disable_gc |
||
54 | self._timer = timer.target |
||
55 | self._min_rounds = min_rounds |
||
56 | self._max_time = float(max_time) |
||
57 | self._min_time = float(min_time) |
||
58 | self._add_stats = add_stats |
||
59 | self._calibration_precision = calibration_precision |
||
60 | self._warmup = warmup and warmup_iterations |
||
61 | self._logger = logger |
||
62 | self._warner = warner |
||
63 | self._cleanup_callbacks = [] |
||
64 | self._mode = None |
||
65 | |||
66 | @property |
||
67 | def enabled(self): |
||
68 | return not self.disabled |
||
69 | |||
70 | def _make_runner(self, function_to_benchmark, args, kwargs): |
||
71 | def runner(loops_range, timer=self._timer): |
||
72 | gc_enabled = gc.isenabled() |
||
73 | if self._disable_gc: |
||
74 | gc.disable() |
||
75 | tracer = sys.gettrace() |
||
76 | sys.settrace(None) |
||
77 | try: |
||
78 | if loops_range: |
||
79 | start = timer() |
||
80 | for _ in loops_range: |
||
81 | function_to_benchmark(*args, **kwargs) |
||
82 | end = timer() |
||
83 | return end - start |
||
84 | else: |
||
85 | start = timer() |
||
86 | result = function_to_benchmark(*args, **kwargs) |
||
87 | end = timer() |
||
88 | return end - start, result |
||
89 | finally: |
||
90 | sys.settrace(tracer) |
||
91 | if gc_enabled: |
||
92 | gc.enable() |
||
93 | |||
94 | return runner |
||
95 | |||
96 | def _make_stats(self, iterations): |
||
97 | bench_stats = BenchmarkStats(self, iterations=iterations, options={ |
||
98 | "disable_gc": self._disable_gc, |
||
99 | "timer": self._timer, |
||
100 | "min_rounds": self._min_rounds, |
||
101 | "max_time": self._max_time, |
||
102 | "min_time": self._min_time, |
||
103 | "warmup": self._warmup, |
||
104 | }) |
||
105 | self._add_stats(bench_stats) |
||
106 | self.stats = bench_stats.stats |
||
107 | return bench_stats |
||
108 | |||
109 | def __call__(self, function_to_benchmark, *args, **kwargs): |
||
110 | if self._mode: |
||
111 | self.has_error = True |
||
112 | raise FixtureAlreadyUsed( |
||
113 | "Fixture can only be used once. Previously it was used in %s mode." % self._mode) |
||
114 | try: |
||
115 | self._mode = 'benchmark(...)' |
||
116 | return self._raw(function_to_benchmark, *args, **kwargs) |
||
117 | except Exception: |
||
118 | self.has_error = True |
||
119 | raise |
||
120 | |||
121 | def pedantic(self, target, args=(), kwargs=None, setup=None, rounds=1, warmup_rounds=0, iterations=1): |
||
122 | if self._mode: |
||
123 | self.has_error = True |
||
124 | raise FixtureAlreadyUsed( |
||
125 | "Fixture can only be used once. Previously it was used in %s mode." % self._mode) |
||
126 | try: |
||
127 | self._mode = 'benchmark.pedantic(...)' |
||
128 | return self._raw_pedantic(target, args=args, kwargs=kwargs, setup=setup, rounds=rounds, |
||
129 | warmup_rounds=warmup_rounds, iterations=iterations) |
||
130 | except Exception: |
||
131 | self.has_error = True |
||
132 | raise |
||
133 | |||
134 | def _raw(self, function_to_benchmark, *args, **kwargs): |
||
135 | if not self.disabled: |
||
136 | runner = self._make_runner(function_to_benchmark, args, kwargs) |
||
137 | |||
138 | duration, iterations, loops_range = self._calibrate_timer(runner) |
||
139 | |||
140 | # Choose how many time we must repeat the test |
||
141 | rounds = int(ceil(self._max_time / duration)) |
||
142 | rounds = max(rounds, self._min_rounds) |
||
143 | rounds = min(rounds, sys.maxsize) |
||
144 | |||
145 | stats = self._make_stats(iterations) |
||
146 | |||
147 | self._logger.debug(" Running %s rounds x %s iterations ..." % (rounds, iterations), yellow=True, bold=True) |
||
148 | run_start = time.time() |
||
149 | if self._warmup: |
||
150 | warmup_rounds = min(rounds, max(1, int(self._warmup / iterations))) |
||
151 | self._logger.debug(" Warmup %s rounds x %s iterations ..." % (warmup_rounds, iterations)) |
||
152 | for _ in XRANGE(warmup_rounds): |
||
153 | runner(loops_range) |
||
154 | for _ in XRANGE(rounds): |
||
155 | stats.update(runner(loops_range)) |
||
156 | self._logger.debug(" Ran for %ss." % format_time(time.time() - run_start), yellow=True, bold=True) |
||
157 | return function_to_benchmark(*args, **kwargs) |
||
158 | |||
159 | def _raw_pedantic(self, target, args=(), kwargs=None, setup=None, rounds=1, warmup_rounds=0, iterations=1): |
||
160 | if kwargs is None: |
||
161 | kwargs = {} |
||
162 | |||
163 | has_args = bool(args or kwargs) |
||
164 | |||
165 | if not isinstance(iterations, INT) or iterations < 1: |
||
166 | raise ValueError("Must have positive int for `iterations`.") |
||
167 | |||
168 | if not isinstance(rounds, INT) or rounds < 1: |
||
169 | raise ValueError("Must have positive int for `rounds`.") |
||
170 | |||
171 | if not isinstance(warmup_rounds, INT) or warmup_rounds < 0: |
||
172 | raise ValueError("Must have positive int for `warmup_rounds`.") |
||
173 | |||
174 | if iterations > 1 and setup: |
||
175 | raise ValueError("Can't use more than 1 `iterations` with a `setup` function.") |
||
176 | |||
177 | def make_arguments(args=args, kwargs=kwargs): |
||
178 | if setup: |
||
179 | maybe_args = setup() |
||
180 | if maybe_args: |
||
181 | if has_args: |
||
182 | raise TypeError("Can't use `args` or `kwargs` if `setup` returns the arguments.") |
||
183 | args, kwargs = maybe_args |
||
184 | return args, kwargs |
||
185 | |||
186 | if self.disabled: |
||
187 | args, kwargs = make_arguments() |
||
188 | return target(*args, **kwargs) |
||
189 | |||
190 | stats = self._make_stats(iterations) |
||
191 | loops_range = XRANGE(iterations) if iterations > 1 else None |
||
192 | for _ in XRANGE(warmup_rounds): |
||
193 | args, kwargs = make_arguments() |
||
194 | |||
195 | runner = self._make_runner(target, args, kwargs) |
||
196 | runner(loops_range) |
||
197 | |||
198 | for _ in XRANGE(rounds): |
||
199 | args, kwargs = make_arguments() |
||
200 | |||
201 | runner = self._make_runner(target, args, kwargs) |
||
202 | if loops_range: |
||
203 | duration = runner(loops_range) |
||
204 | else: |
||
205 | duration, result = runner(loops_range) |
||
206 | stats.update(duration) |
||
207 | |||
208 | if loops_range: |
||
209 | args, kwargs = make_arguments() |
||
210 | result = target(*args, **kwargs) |
||
211 | return result |
||
212 | |||
213 | def weave(self, target, **kwargs): |
||
214 | try: |
||
215 | import aspectlib |
||
216 | except ImportError as exc: |
||
217 | raise ImportError(exc.args, "Please install aspectlib or pytest-benchmark[aspect]") |
||
218 | |||
219 | def aspect(function): |
||
220 | def wrapper(*args, **kwargs): |
||
221 | return self(function, *args, **kwargs) |
||
222 | |||
223 | return wrapper |
||
224 | |||
225 | self._cleanup_callbacks.append(aspectlib.weave(target, aspect, **kwargs).rollback) |
||
226 | |||
227 | patch = weave |
||
228 | |||
229 | def _cleanup(self): |
||
230 | while self._cleanup_callbacks: |
||
231 | callback = self._cleanup_callbacks.pop() |
||
232 | callback() |
||
233 | if not self._mode: |
||
234 | self._logger.warn("BENCHMARK-U1", "Benchmark fixture was not used at all in this test!", |
||
235 | warner=self._warner, suspend=True) |
||
236 | |||
237 | def _calibrate_timer(self, runner): |
||
238 | timer_precision = self._get_precision(self._timer) |
||
239 | min_time = max(self._min_time, timer_precision * self._calibration_precision) |
||
240 | min_time_estimate = min_time * 5 / self._calibration_precision |
||
241 | self._logger.debug("") |
||
242 | self._logger.debug(" Timer precision: %ss" % format_time(timer_precision), yellow=True, bold=True) |
||
243 | self._logger.debug(" Calibrating to target round %ss; will estimate when reaching %ss." % ( |
||
244 | format_time(min_time), format_time(min_time_estimate)), yellow=True, bold=True) |
||
245 | |||
246 | loops = 1 |
||
247 | while True: |
||
248 | loops_range = XRANGE(loops) |
||
249 | duration = runner(loops_range) |
||
250 | if self._warmup: |
||
251 | warmup_start = time.time() |
||
252 | warmup_iterations = 0 |
||
253 | warmup_rounds = 0 |
||
254 | while time.time() - warmup_start < self._max_time and warmup_iterations < self._warmup: |
||
255 | duration = min(duration, runner(loops_range)) |
||
256 | warmup_rounds += 1 |
||
257 | warmup_iterations += loops |
||
258 | self._logger.debug(" Warmup: %ss (%s x %s iterations)." % ( |
||
259 | format_time(time.time() - warmup_start), |
||
260 | warmup_rounds, loops |
||
261 | )) |
||
262 | |||
263 | self._logger.debug(" Measured %s iterations: %ss." % (loops, format_time(duration)), yellow=True) |
||
264 | if duration >= min_time: |
||
265 | break |
||
266 | |||
267 | if duration >= min_time_estimate: |
||
268 | # coarse estimation of the number of loops |
||
269 | loops = int(ceil(min_time * loops / duration)) |
||
270 | self._logger.debug(" Estimating %s iterations." % loops, green=True) |
||
271 | if loops == 1: |
||
272 | # If we got a single loop then bail early - nothing to calibrate if the the |
||
273 | # test function is 100 times slower than the timer resolution. |
||
274 | loops_range = XRANGE(loops) |
||
275 | break |
||
276 | else: |
||
277 | loops *= 10 |
||
278 | return duration, loops, loops_range |
||
279 |