1
|
|
|
from __future__ import annotations |
2
|
|
|
|
3
|
|
|
__version__ = '0.1.1' |
4
|
|
|
|
5
|
|
|
from itertools import starmap |
6
|
|
|
from typing import TYPE_CHECKING |
7
|
|
|
|
8
|
|
|
if TYPE_CHECKING: |
9
|
|
|
from typing import Optional, Callable, Dict |
10
|
|
|
from collections.abc import Iterable |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def _map_parallel_multiprocessing( |
14
|
|
|
f: Callable, |
15
|
|
|
*args: Iterable, |
16
|
|
|
processes: Optional[int] = None, |
17
|
|
|
return_results: bool = True, |
18
|
|
|
) -> list: |
19
|
|
|
from concurrent.futures import ProcessPoolExecutor |
20
|
|
|
|
21
|
|
|
with ProcessPoolExecutor(max_workers=processes) as process_pool_executor: |
22
|
|
|
res = process_pool_executor.map(f, *args) |
23
|
|
|
if return_results: |
24
|
|
|
return list(res) |
25
|
|
|
else: |
26
|
|
|
return [] |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
def _map_parallel_multithreading( |
30
|
|
|
f: Callable, |
31
|
|
|
*args: Iterable, |
32
|
|
|
processes: Optional[int] = None, |
33
|
|
|
return_results: bool = True, |
34
|
|
|
) -> list: |
35
|
|
|
from concurrent.futures import ThreadPoolExecutor |
36
|
|
|
|
37
|
|
|
with ThreadPoolExecutor(max_workers=processes) as thread_pool_executor: |
38
|
|
|
res = thread_pool_executor.map(f, *args) |
39
|
|
|
if return_results: |
40
|
|
|
return list(res) |
41
|
|
|
else: |
42
|
|
|
return [] |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
def _map_parallel_dask( |
46
|
|
|
f: Callable, |
47
|
|
|
*args: Iterable, |
48
|
|
|
processes: Optional[int] = None, |
49
|
|
|
return_results: bool = True, |
50
|
|
|
) -> list: |
51
|
|
|
from dask.distributed import Client |
52
|
|
|
from dask.distributed import LocalCluster |
53
|
|
|
|
54
|
|
|
cluster = LocalCluster(n_workers=processes, dashboard_address=None) |
55
|
|
|
client = Client(cluster) |
56
|
|
|
if return_results: |
57
|
|
|
return [future.result() for future in client.map(f, *args)] |
58
|
|
|
else: |
59
|
|
|
for future in client.map(f, *args): |
60
|
|
|
future.result() |
61
|
|
|
return [] |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
def _map_parallel_mpi(f: Callable, *args: Iterable, return_results: bool = True, **kwargs) -> list: |
65
|
|
|
from mpi4py.futures import MPIPoolExecutor |
66
|
|
|
|
67
|
|
|
with MPIPoolExecutor() as mpi_pool_executor: |
68
|
|
|
res = mpi_pool_executor.map(f, *args) |
69
|
|
|
if return_results: |
70
|
|
|
return list(res) |
71
|
|
|
else: |
72
|
|
|
return [] |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
def _starmap_parallel_mpi_simple( |
76
|
|
|
f: Callable, |
77
|
|
|
args: Iterable[Iterable], |
78
|
|
|
return_results: bool = True, |
79
|
|
|
**kwargs, |
80
|
|
|
) -> list: |
81
|
|
|
from mpi4py import MPI |
82
|
|
|
|
83
|
|
|
comm = MPI.COMM_WORLD |
84
|
|
|
size = comm.Get_size() |
85
|
|
|
rank = comm.Get_rank() |
86
|
|
|
|
87
|
|
|
args_list = list(args) |
88
|
|
|
if args_list: |
89
|
|
|
n = len(args_list) |
90
|
|
|
start = (rank * n) // size |
91
|
|
|
end = ((rank + 1) * n) // size |
92
|
|
|
local_args = args_list[start:end] |
93
|
|
|
res = list(starmap(f, local_args)) |
94
|
|
|
|
95
|
|
|
if return_results: |
96
|
|
|
res = comm.gather(res, root=0) |
97
|
|
|
if rank == 0: |
98
|
|
|
return sum(res, []) |
99
|
|
|
return [] |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
_map_parallel_func: Dict[str, Callable] = { |
|
|
|
|
103
|
|
|
'multiprocessing': _map_parallel_multiprocessing, |
104
|
|
|
'multithreading': _map_parallel_multithreading, |
105
|
|
|
'dask': _map_parallel_dask, |
106
|
|
|
'mpi': _map_parallel_mpi, |
107
|
|
|
} |
108
|
|
|
|
109
|
|
|
_starmap_parallel_func: Dict[str, Callable] = { |
110
|
|
|
'mpi_simple': _starmap_parallel_mpi_simple, |
111
|
|
|
} |
112
|
|
|
|
113
|
|
|
|
114
|
|
View Code Duplication |
def map_parallel( |
|
|
|
|
115
|
|
|
f: Callable, |
116
|
|
|
*args: Iterable, |
117
|
|
|
processes: Optional[int] = None, |
118
|
|
|
mode: str = 'multiprocessing', |
119
|
|
|
return_results: bool = True, |
120
|
|
|
) -> list: |
121
|
|
|
'''equiv to `map(f, *args)` but in parallel |
122
|
|
|
|
123
|
|
|
:param str mode: backend for parallelization |
124
|
|
|
|
125
|
|
|
- multiprocessing: using multiprocessing from standard library |
126
|
|
|
- multithreading: using multithreading from standard library |
127
|
|
|
- dask: using dask.distributed |
128
|
|
|
- mpi: using mpi4py.futures. May not work depending on your MPI vendor |
129
|
|
|
- mpi_simple: using mpi4py with simple scheduling that divides works into equal chunks |
130
|
|
|
- serial: using map |
131
|
|
|
:param int processes: no. of parallel processes |
132
|
|
|
|
133
|
|
|
(in the case of mpi, it is determined by mpiexec/mpirun args) |
134
|
|
|
|
135
|
|
|
:param bool return_results: (Only affects mode == 'mpi_simple') if True, return results in rank 0. |
136
|
|
|
''' |
137
|
|
|
if processes is None or processes > 1: |
138
|
|
|
if mode in _map_parallel_func: |
139
|
|
|
return _map_parallel_func[mode](f, *args, processes=processes, return_results=return_results) |
140
|
|
|
elif mode in _starmap_parallel_func: |
141
|
|
|
return _starmap_parallel_func[mode](f, zip(*args), processes=processes, return_results=return_results) |
142
|
|
|
return list(map(f, *args)) |
143
|
|
|
|
144
|
|
|
|
145
|
|
View Code Duplication |
def starmap_parallel( |
|
|
|
|
146
|
|
|
f: Callable, |
147
|
|
|
args: Iterable[Iterable], |
148
|
|
|
processes: Optional[int] = None, |
149
|
|
|
mode: str = 'multiprocessing', |
150
|
|
|
return_results: bool = True, |
151
|
|
|
) -> list: |
152
|
|
|
'''equiv to `starmap(f, args)` but in parallel |
153
|
|
|
|
154
|
|
|
See docstring from :func:`~map_parallel.map_parallel` |
155
|
|
|
''' |
156
|
|
|
if processes is None or processes > 1: |
157
|
|
|
if mode in _map_parallel_func: |
158
|
|
|
return _map_parallel_func[mode](f, *zip(*args), processes=processes, return_results=return_results) |
159
|
|
|
elif mode in _starmap_parallel_func: |
160
|
|
|
return _starmap_parallel_func[mode](f, args, processes=processes, return_results=return_results) |
161
|
|
|
return list(starmap(f, args)) |
162
|
|
|
|