1
|
|
|
import inspect |
2
|
|
|
|
3
|
|
|
import numpy as np |
|
|
|
|
4
|
|
|
import scipy |
|
|
|
|
5
|
|
|
import bottlechest as bn |
|
|
|
|
6
|
|
|
|
7
|
|
|
from Orange.data import Table, Storage, Instance, Value |
8
|
|
|
from Orange.preprocess import Continuize, RemoveNaNColumns, SklImpute |
9
|
|
|
from Orange.misc.wrapper_meta import WrapperMeta |
10
|
|
|
|
11
|
|
|
__all__ = ["Learner", "Model", "SklLearner", "SklModel"] |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
class Learner: |
15
|
|
|
supports_multiclass = False |
16
|
|
|
supports_weights = False |
17
|
|
|
name = 'learner' |
18
|
|
|
#: A sequence of data preprocessors to apply on data prior to |
19
|
|
|
#: fitting the model |
20
|
|
|
preprocessors = () |
21
|
|
|
learner_adequacy_err_msg = '' |
22
|
|
|
|
23
|
|
|
def __init__(self, preprocessors=None): |
24
|
|
|
if preprocessors is None: |
25
|
|
|
preprocessors = type(self).preprocessors |
26
|
|
|
self.preprocessors = list(preprocessors) |
27
|
|
|
|
28
|
|
|
def fit(self, X, Y, W=None): |
29
|
|
|
raise NotImplementedError( |
30
|
|
|
"Descendants of Learner must overload method fit") |
31
|
|
|
|
32
|
|
|
def fit_storage(self, data): |
33
|
|
|
return self.fit(data.X, data.Y, data.W) |
34
|
|
|
|
35
|
|
|
def __call__(self, data): |
36
|
|
|
if not self.check_learner_adequacy(data.domain): |
37
|
|
|
raise ValueError(self.learner_adequacy_err_msg) |
38
|
|
|
|
39
|
|
|
origdomain = data.domain |
40
|
|
|
|
41
|
|
|
if isinstance(data, Instance): |
42
|
|
|
data = Table(data.domain, [data]) |
43
|
|
|
data = self.preprocess(data) |
44
|
|
|
|
45
|
|
|
if len(data.domain.class_vars) > 1 and not self.supports_multiclass: |
46
|
|
|
raise TypeError("%s doesn't support multiple class variables" % |
47
|
|
|
self.__class__.__name__) |
48
|
|
|
|
49
|
|
|
self.domain = data.domain |
|
|
|
|
50
|
|
|
|
51
|
|
|
if type(self).fit is Learner.fit: |
52
|
|
|
model = self.fit_storage(data) |
53
|
|
|
else: |
54
|
|
|
X, Y, W = data.X, data.Y, data.W if data.has_weights() else None |
55
|
|
|
model = self.fit(X, Y, W) |
56
|
|
|
model.domain = data.domain |
57
|
|
|
model.supports_multiclass = self.supports_multiclass |
58
|
|
|
model.name = self.name |
59
|
|
|
model.original_domain = origdomain |
60
|
|
|
return model |
61
|
|
|
|
62
|
|
|
def preprocess(self, data): |
63
|
|
|
""" |
64
|
|
|
Apply the `preprocessors` to the data. |
65
|
|
|
""" |
66
|
|
|
for pp in self.preprocessors: |
67
|
|
|
data = pp(data) |
68
|
|
|
return data |
69
|
|
|
|
70
|
|
|
def __repr__(self): |
71
|
|
|
return self.name |
72
|
|
|
|
73
|
|
|
def check_learner_adequacy(self, domain): |
|
|
|
|
74
|
|
|
return True |
75
|
|
|
|
76
|
|
|
|
77
|
|
|
class Model: |
78
|
|
|
supports_multiclass = False |
79
|
|
|
supports_weights = False |
80
|
|
|
Value = 0 |
81
|
|
|
Probs = 1 |
82
|
|
|
ValueProbs = 2 |
83
|
|
|
|
84
|
|
|
def __init__(self, domain=None): |
85
|
|
|
if isinstance(self, Learner): |
86
|
|
|
domain = None |
87
|
|
|
elif not domain: |
88
|
|
|
raise ValueError("unspecified domain") |
89
|
|
|
self.domain = domain |
90
|
|
|
|
91
|
|
|
def predict(self, X): |
92
|
|
|
if self.predict_storage == Model.predict_storage: |
93
|
|
|
raise TypeError("Descendants of Model must overload method predict") |
94
|
|
|
else: |
95
|
|
|
Y = np.zeros((len(X), len(self.domain.class_vars))) |
96
|
|
|
Y[:] = np.nan |
97
|
|
|
table = Table(self.domain, X, Y) |
98
|
|
|
return self.predict_storage(table) |
99
|
|
|
|
100
|
|
|
def predict_storage(self, data): |
101
|
|
|
if isinstance(data, Storage): |
102
|
|
|
return self.predict(data.X) |
103
|
|
|
elif isinstance(data, Instance): |
104
|
|
|
return self.predict(np.atleast_2d(data.x)) |
105
|
|
|
raise TypeError("Unrecognized argument (instance of '{}')".format( |
106
|
|
|
type(data).__name__)) |
107
|
|
|
|
108
|
|
|
def __call__(self, data, ret=Value): |
109
|
|
|
if not 0 <= ret <= 2: |
110
|
|
|
raise ValueError("invalid value of argument 'ret'") |
111
|
|
|
if (ret > 0 |
112
|
|
|
and any(v.is_continuous for v in self.domain.class_vars)): |
113
|
|
|
raise ValueError("cannot predict continuous distributions") |
114
|
|
|
|
115
|
|
|
# Call the predictor |
116
|
|
|
if isinstance(data, np.ndarray): |
117
|
|
|
prediction = self.predict(np.atleast_2d(data)) |
118
|
|
|
elif isinstance(data, scipy.sparse.csr.csr_matrix): |
119
|
|
|
prediction = self.predict(data) |
120
|
|
|
elif isinstance(data, Instance): |
121
|
|
|
if data.domain != self.domain: |
122
|
|
|
data = Instance(self.domain, data) |
123
|
|
|
data = Table(data.domain, [data]) |
124
|
|
|
prediction = self.predict_storage(data) |
125
|
|
|
elif isinstance(data, Table): |
126
|
|
|
if data.domain != self.domain: |
127
|
|
|
data = data.from_table(self.domain, data) |
128
|
|
|
prediction = self.predict_storage(data) |
129
|
|
|
elif isinstance(data, (list, tuple)): |
130
|
|
|
if not isinstance(data[0], (list, tuple)): |
131
|
|
|
data = [ data ] |
132
|
|
|
data = Table(self.original_domain, data) |
133
|
|
|
data = Table(self.domain, data) |
134
|
|
|
prediction = self.predict_storage(data) |
135
|
|
|
else: |
136
|
|
|
raise TypeError("Unrecognized argument (instance of '{}')".format( |
137
|
|
|
type(data).__name__)) |
138
|
|
|
|
139
|
|
|
# Parse the result into value and probs |
140
|
|
|
multitarget = len(self.domain.class_vars) > 1 |
141
|
|
|
if isinstance(prediction, tuple): |
142
|
|
|
value, probs = prediction |
143
|
|
|
elif prediction.ndim == 1 + multitarget: |
144
|
|
|
value, probs = prediction, None |
145
|
|
|
elif prediction.ndim == 2 + multitarget: |
146
|
|
|
value, probs = None, prediction |
147
|
|
|
else: |
148
|
|
|
raise TypeError("model returned a %i-dimensional array", |
149
|
|
|
prediction.ndim) |
150
|
|
|
|
151
|
|
|
# Ensure that we have what we need to return |
152
|
|
|
if ret != Model.Probs and value is None: |
153
|
|
|
value = np.argmax(probs, axis=-1) |
154
|
|
|
if ret != Model.Value and probs is None: |
155
|
|
|
if multitarget: |
156
|
|
|
max_card = max(len(c.values) |
157
|
|
|
for c in self.domain.class_vars) |
158
|
|
|
probs = np.zeros(value.shape + (max_card,), float) |
159
|
|
|
for i, cvar in enumerate(self.domain.class_vars): |
|
|
|
|
160
|
|
|
probs[:, i, :], _ = bn.bincount(np.atleast_2d(value[:, i]), |
161
|
|
|
max_card - 1) |
162
|
|
|
else: |
163
|
|
|
probs, _ = bn.bincount(np.atleast_2d(value), |
164
|
|
|
len(self.domain.class_var.values) - 1) |
165
|
|
|
if ret == Model.ValueProbs: |
166
|
|
|
return value, probs |
167
|
|
|
else: |
168
|
|
|
return probs |
169
|
|
|
|
170
|
|
|
# Return what we need to |
171
|
|
|
if ret == Model.Probs: |
172
|
|
|
return probs |
173
|
|
|
if isinstance(data, Instance) and not multitarget: |
174
|
|
|
value = Value(self.domain.class_var, value[0]) |
175
|
|
|
if ret == Model.Value: |
176
|
|
|
return value |
177
|
|
|
else: # ret == Model.ValueProbs |
178
|
|
|
return value, probs |
179
|
|
|
|
180
|
|
|
def __repr__(self): |
181
|
|
|
return self.name |
182
|
|
|
|
183
|
|
|
|
184
|
|
|
class SklModel(Model, metaclass=WrapperMeta): |
185
|
|
|
used_vals = None |
186
|
|
|
|
187
|
|
|
def __init__(self, skl_model): |
|
|
|
|
188
|
|
|
self.skl_model = skl_model |
189
|
|
|
|
190
|
|
|
def predict(self, X): |
191
|
|
|
value = self.skl_model.predict(X) |
192
|
|
|
if hasattr(self.skl_model, "predict_proba"): |
193
|
|
|
probs = self.skl_model.predict_proba(X) |
194
|
|
|
return value, probs |
195
|
|
|
return value |
196
|
|
|
|
197
|
|
|
def __repr__(self): |
198
|
|
|
return '{} {}'.format(self.name, self.params) |
199
|
|
|
|
200
|
|
|
|
201
|
|
|
class SklLearner(Learner, metaclass=WrapperMeta): |
202
|
|
|
""" |
203
|
|
|
${skldoc} |
204
|
|
|
Additional Orange parameters |
205
|
|
|
|
206
|
|
|
preprocessors : list, optional (default=[Continuize(), SklImpute(), RemoveNaNColumns()]) |
207
|
|
|
An ordered list of preprocessors applied to data before |
208
|
|
|
training or testing. |
209
|
|
|
""" |
210
|
|
|
__wraps__ = None |
211
|
|
|
__returns__ = SklModel |
212
|
|
|
_params = {} |
213
|
|
|
|
214
|
|
|
name = 'skl learner' |
215
|
|
|
preprocessors = [Continuize(), |
216
|
|
|
RemoveNaNColumns(), |
217
|
|
|
SklImpute(force=False)] |
218
|
|
|
|
219
|
|
|
@property |
220
|
|
|
def params(self): |
221
|
|
|
return self._params |
222
|
|
|
|
223
|
|
|
@params.setter |
224
|
|
|
def params(self, value): |
225
|
|
|
self._params = self._get_sklparams(value) |
226
|
|
|
|
227
|
|
|
def _get_sklparams(self, values): |
|
|
|
|
228
|
|
|
skllearner = self.__wraps__ |
229
|
|
|
if skllearner is not None: |
230
|
|
|
spec = inspect.getargs(skllearner.__init__.__code__) |
231
|
|
|
# first argument is 'self' |
232
|
|
|
assert spec.args[0] == "self" |
233
|
|
|
params = {name: values[name] for name in spec.args[1:] |
234
|
|
|
if name in values} |
235
|
|
|
else: |
236
|
|
|
raise TypeError("Wrapper does not define '__wraps__'") |
237
|
|
|
return params |
238
|
|
|
|
239
|
|
|
def preprocess(self, data): |
240
|
|
|
data = super().preprocess(data) |
241
|
|
|
|
242
|
|
|
if any(v.is_discrete and len(v.values) > 2 |
243
|
|
|
for v in data.domain.attributes): |
244
|
|
|
raise ValueError("Wrapped scikit-learn methods do not support " + |
245
|
|
|
"multinomial variables.") |
246
|
|
|
|
247
|
|
|
return data |
248
|
|
|
|
249
|
|
|
def __call__(self, data): |
250
|
|
|
m = super().__call__(data) |
251
|
|
|
m.used_vals = [np.unique(y) for y in data.Y[:, None].T] |
252
|
|
|
m.params = self.params |
253
|
|
|
return m |
254
|
|
|
|
255
|
|
|
def fit(self, X, Y, W): |
|
|
|
|
256
|
|
|
clf = self.__wraps__(**self.params) |
257
|
|
|
Y = Y.reshape(-1) |
258
|
|
|
if W is None or not self.supports_weights: |
259
|
|
|
return self.__returns__(clf.fit(X, Y)) |
260
|
|
|
return self.__returns__(clf.fit(X, Y, sample_weight=W.reshape(-1))) |
261
|
|
|
|
262
|
|
|
def __repr__(self): |
263
|
|
|
return '{} {}'.format(self.name, self.params) |
264
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.