1
|
|
|
import collections |
2
|
|
|
from contextlib import contextmanager |
3
|
|
|
|
4
|
|
|
import matplotlib.pyplot as plt |
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from astromodels import Parameter, Uniform_prior |
8
|
|
|
from polarpy.modulation_curve_file import ModulationCurveFile |
9
|
|
|
from polarpy.polar_response import PolarResponse |
10
|
|
|
from threeML import PluginPrototype |
11
|
|
|
from threeML.io.plotting.step_plot import step_plot |
12
|
|
|
from threeML.utils.binner import Rebinner |
13
|
|
|
from threeML.utils.polarization.binned_polarization import \ |
14
|
|
|
BinnedModulationCurve |
15
|
|
|
from threeML.utils.statistics.likelihood_functions import ( |
16
|
|
|
poisson_observed_gaussian_background, poisson_observed_poisson_background) |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
class PolarLike(PluginPrototype): |
20
|
|
|
""" |
21
|
|
|
Preliminary POLAR polarization plugin |
22
|
|
|
""" |
23
|
|
|
|
24
|
|
|
def __init__(self, name, observation, background, response, interval_number=None, verbose=False): |
25
|
|
|
""" |
26
|
|
|
|
27
|
|
|
The Polarization likelihood for POLAR. This plugin is heavily modeled off |
28
|
|
|
the 3ML dispersion based plugins. It interpolates the spectral photon model |
29
|
|
|
over the scattering angle bins to allow for spectral + polarization analysis. |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
|
33
|
|
|
:param interval_number: The time interval starting from 1. |
34
|
|
|
:param name: The name of the plugin |
35
|
|
|
:param observation: The POLAR observation file |
36
|
|
|
:param background: The POLAR background file |
37
|
|
|
:param response: The POLAR polarization response |
38
|
|
|
|
39
|
|
|
:param verbose: |
40
|
|
|
|
41
|
|
|
""" |
42
|
|
|
|
43
|
|
|
# if we pass a string, there may be multiple time intervals |
44
|
|
|
# saved so we must specify a time interval |
45
|
|
|
|
46
|
|
|
if isinstance(observation, str): |
47
|
|
|
assert interval_number is not None, 'must specify an interval number' |
48
|
|
|
|
49
|
|
|
# this is a file |
50
|
|
|
read_file = ModulationCurveFile.read(observation) |
51
|
|
|
|
52
|
|
|
# create the bmc |
53
|
|
|
observation = read_file.to_binned_modulation_curve( |
54
|
|
|
interval=interval_number) |
55
|
|
|
|
56
|
|
|
# the same applies for the background |
57
|
|
|
if isinstance(background, str): |
58
|
|
|
assert interval_number is not None, 'must specify an interval number' |
59
|
|
|
|
60
|
|
|
# this is a file |
61
|
|
|
read_file = ModulationCurveFile.read(background) |
62
|
|
|
|
63
|
|
|
background = read_file.to_binned_modulation_curve( |
64
|
|
|
interval=interval_number) |
65
|
|
|
|
66
|
|
|
assert isinstance( |
67
|
|
|
observation, BinnedModulationCurve), 'The observation must be a BinnedModulationCurve' |
68
|
|
|
assert isinstance( |
69
|
|
|
background, BinnedModulationCurve), 'The observation must be a BinnedModulationCurve' |
70
|
|
|
|
71
|
|
|
# attach the required variables |
72
|
|
|
|
73
|
|
|
self._observation = observation |
74
|
|
|
self._background = background |
75
|
|
|
|
76
|
|
|
self._observed_counts = observation.counts.astype(np.int64) |
77
|
|
|
self._background_counts = background.counts |
78
|
|
|
self._background_count_errors = background.count_errors |
79
|
|
|
self._scale = observation.exposure / background.exposure |
80
|
|
|
self._exposure = observation.exposure |
81
|
|
|
self._background_exposure = background.exposure |
82
|
|
|
|
83
|
|
|
self._likelihood_model = None |
84
|
|
|
self._rebinner = None |
85
|
|
|
|
86
|
|
|
# now do some double checks |
87
|
|
|
|
88
|
|
|
assert len(self._observed_counts) == len(self._background_counts) |
89
|
|
|
|
90
|
|
|
self._n_synthetic_datasets = 0 |
91
|
|
|
|
92
|
|
|
# set up the effective area correction |
93
|
|
|
|
94
|
|
|
self._nuisance_parameter = Parameter( |
95
|
|
|
"cons_%s" % name, |
96
|
|
|
1.0, |
97
|
|
|
min_value=0.8, |
98
|
|
|
max_value=1.2, |
99
|
|
|
delta=0.05, |
100
|
|
|
free=False, |
101
|
|
|
desc="Effective area correction for %s" % name) |
102
|
|
|
|
103
|
|
|
nuisance_parameters = collections.OrderedDict() |
104
|
|
|
nuisance_parameters[self._nuisance_parameter.name] = self._nuisance_parameter |
105
|
|
|
|
106
|
|
|
# pass to the plugin proto |
107
|
|
|
|
108
|
|
|
super(PolarLike, self).__init__(name, nuisance_parameters) |
109
|
|
|
|
110
|
|
|
# The following vectors are the ones that will be really used for the computation. At the beginning they just |
111
|
|
|
# point to the original ones, but if a rebinner is used and/or a mask is created through set_active_measurements, |
112
|
|
|
# they will contain the rebinned and/or masked versions |
113
|
|
|
|
114
|
|
|
self._current_observed_counts = self._observed_counts |
115
|
|
|
self._current_background_counts = self._background_counts |
116
|
|
|
self._current_background_count_errors = self._background_count_errors |
117
|
|
|
|
118
|
|
|
self._verbose = verbose |
119
|
|
|
|
120
|
|
|
# we can either attach or build a response |
121
|
|
|
|
122
|
|
|
assert isinstance(response, str) or isinstance( |
123
|
|
|
response, PolarResponse), 'The response must be a file name or a PolarResponse' |
124
|
|
|
|
125
|
|
|
if isinstance(response, PolarResponse): |
126
|
|
|
|
127
|
|
|
self._response = response |
128
|
|
|
|
129
|
|
|
else: |
130
|
|
|
|
131
|
|
|
self._response = PolarResponse(response) |
132
|
|
|
|
133
|
|
|
# attach the interpolators to the |
134
|
|
|
|
135
|
|
|
self._all_interp = self._response.interpolators |
136
|
|
|
|
137
|
|
|
# we also make sure the lengths match up here |
138
|
|
|
assert self._response.n_scattering_bins == len( |
139
|
|
|
self._observation.counts), 'observation counts shape does not agree with response shape' |
140
|
|
|
|
141
|
|
|
def use_effective_area_correction(self, lower=0.5, upper=1.5): |
142
|
|
|
""" |
143
|
|
|
Use an area constant to correct for response issues |
144
|
|
|
|
145
|
|
|
:param lower: |
146
|
|
|
:param upper: |
147
|
|
|
:return: |
148
|
|
|
""" |
149
|
|
|
|
150
|
|
|
self._nuisance_parameter.free = True |
151
|
|
|
self._nuisance_parameter.bounds = (lower, upper) |
152
|
|
|
self._nuisance_parameter.prior = Uniform_prior( |
153
|
|
|
lower_bound=lower, upper_bound=upper) |
154
|
|
|
if self._verbose: |
155
|
|
|
print('Using effective area correction') |
156
|
|
|
|
157
|
|
|
def fix_effective_area_correction(self, value=1): |
158
|
|
|
""" |
159
|
|
|
|
160
|
|
|
fix the effective area correction to a particular values |
161
|
|
|
|
162
|
|
|
:param value: |
163
|
|
|
:return: |
164
|
|
|
""" |
165
|
|
|
|
166
|
|
|
# allow the value to be outside the bounds |
167
|
|
|
if self._nuisance_parameter.max_value < value: |
168
|
|
|
|
169
|
|
|
self._nuisance_parameter.max_value = value + 0.1 |
170
|
|
|
|
171
|
|
|
elif self._nuisance_parameter.min_value > value: |
172
|
|
|
|
173
|
|
|
self._nuisance_parameter.min_value = value = 0.1 |
174
|
|
|
|
175
|
|
|
self._nuisance_parameter.fix = True |
176
|
|
|
self._nuisance_parameter.value = value |
177
|
|
|
|
178
|
|
|
if self._verbose: |
179
|
|
|
print('Fixing effective area correction') |
180
|
|
|
|
181
|
|
|
@property |
182
|
|
|
def effective_area_correction(self): |
183
|
|
|
|
184
|
|
|
return self._nuisance_parameter |
185
|
|
|
|
186
|
|
|
def get_simulated_dataset(self, new_name=None, **kwargs): |
187
|
|
|
""" |
188
|
|
|
Returns another Binned instance where data have been obtained by randomizing the current expectation from the |
189
|
|
|
model, as well as from the background (depending on the respective noise models) |
190
|
|
|
|
191
|
|
|
:return: an BinnedSpectrum or child instance |
192
|
|
|
""" |
193
|
|
|
|
194
|
|
|
assert self._likelihood_model is not None, "You need to set up a model before randomizing" |
195
|
|
|
|
196
|
|
|
# Keep track of how many syntethic datasets we have generated |
197
|
|
|
|
198
|
|
|
self._n_synthetic_datasets += 1 |
199
|
|
|
|
200
|
|
|
# Generate a name for the new dataset if needed |
201
|
|
|
if new_name is None: |
202
|
|
|
new_name = "%s_sim_%i" % (self.name, self._n_synthetic_datasets) |
203
|
|
|
|
204
|
|
|
# Generate randomized data depending on the different noise models |
205
|
|
|
|
206
|
|
|
# We remove the mask temporarily because we need the various elements for all channels. We will restore it |
207
|
|
|
# at the end |
208
|
|
|
|
209
|
|
|
# Get the source model for all channels (that's why we don't use the .folded_model property) |
210
|
|
|
|
211
|
|
|
# We remove the mask temporarily because we need the various elements for all channels. We will restore it |
212
|
|
|
# at the end |
213
|
|
|
|
214
|
|
|
original_rebinner = self._rebinner |
215
|
|
|
|
216
|
|
|
with self._without_rebinner(): |
217
|
|
|
|
218
|
|
|
# Get the source model for all channels (that's why we don't use the .folded_model property) |
219
|
|
|
|
220
|
|
|
source_model_counts = self._get_model_counts() |
221
|
|
|
|
222
|
|
|
if self._background.is_poisson: |
223
|
|
|
_, background_model_counts = poisson_observed_poisson_background( |
224
|
|
|
self._current_observed_counts, self._current_background_counts, self._scale, source_model_counts) |
225
|
|
|
randomized_background_counts = np.random.poisson( |
226
|
|
|
background_model_counts) |
227
|
|
|
|
228
|
|
|
background_count_errors = None |
229
|
|
|
else: |
230
|
|
|
|
231
|
|
|
_, background_model_counts = poisson_observed_gaussian_background( |
232
|
|
|
self._current_observed_counts, self._current_background_counts, |
233
|
|
|
self._current_background_count_errors, source_model_counts) |
234
|
|
|
|
235
|
|
|
randomized_background_counts = np.zeros_like( |
236
|
|
|
background_model_counts) |
237
|
|
|
|
238
|
|
|
idx = (self._background_count_errors > 0) |
239
|
|
|
|
240
|
|
|
randomized_background_counts[idx] = np.random.normal( |
241
|
|
|
loc=background_model_counts[idx], scale=self._background_count_errors[idx]) |
242
|
|
|
|
243
|
|
|
# Issue a warning if the generated background is less than zero, and fix it by placing it at zero |
244
|
|
|
|
245
|
|
|
idx = (randomized_background_counts < 0) # type: np.ndarray |
246
|
|
|
|
247
|
|
|
negative_background_n = np.sum(idx) |
248
|
|
|
|
249
|
|
|
if negative_background_n > 0: |
250
|
|
|
# custom_warnings.warn("Generated background has negative counts " |
251
|
|
|
# "in %i channels. Fixing them to zero" % (negative_background_n)) |
252
|
|
|
|
253
|
|
|
randomized_background_counts[idx] = 0 |
254
|
|
|
|
255
|
|
|
background_count_errors = self._background_count_errors |
256
|
|
|
|
257
|
|
|
# Now randomize the expectations |
258
|
|
|
|
259
|
|
|
# Randomize expectations for the source |
260
|
|
|
|
261
|
|
|
randomized_source_counts = np.random.poisson( |
262
|
|
|
source_model_counts + background_model_counts) |
263
|
|
|
|
264
|
|
|
# |
265
|
|
|
|
266
|
|
|
new_observation = self._observation.clone( |
267
|
|
|
new_counts=randomized_source_counts) |
268
|
|
|
|
269
|
|
|
new_background = self._background.clone( |
270
|
|
|
new_counts=randomized_background_counts, new_count_errors=background_count_errors) |
271
|
|
|
|
272
|
|
|
new_plugin = PolarLike( |
273
|
|
|
name=new_name, |
274
|
|
|
observation=new_observation, |
275
|
|
|
background=new_background, |
276
|
|
|
response=self._response, |
277
|
|
|
verbose=False, |
278
|
|
|
) |
279
|
|
|
|
280
|
|
|
# Apply the same selections as the current data set |
281
|
|
|
if original_rebinner is not None: |
282
|
|
|
|
283
|
|
|
# Apply rebinning, which also applies the mask |
284
|
|
|
new_plugin._apply_rebinner(original_rebinner) |
285
|
|
|
|
286
|
|
|
return new_plugin |
287
|
|
|
|
288
|
|
|
def set_model(self, likelihood_model_instance): |
289
|
|
|
""" |
290
|
|
|
Set the model to be used in the joint minimization. Must be a LikelihoodModel instance. |
291
|
|
|
:param likelihood_model_instance: instance of Model |
292
|
|
|
:type likelihood_model_instance: astromodels.Model |
293
|
|
|
""" |
294
|
|
|
|
295
|
|
|
if likelihood_model_instance is None: |
296
|
|
|
return |
297
|
|
|
|
298
|
|
|
# if self._source_name is not None: |
299
|
|
|
|
300
|
|
|
# # Make sure that the source is in the model |
301
|
|
|
# assert self._source_name in likelihood_model_instance.sources, \ |
302
|
|
|
# "This XYLike plugin refers to the source %s, " \ |
303
|
|
|
# "but that source is not in the likelihood model" % (self._source_name) |
304
|
|
|
|
305
|
|
|
for k, v in likelihood_model_instance.free_parameters.items(): |
306
|
|
|
|
307
|
|
|
if 'polarization.degree' in k: |
308
|
|
|
self._pol_degree = v |
309
|
|
|
|
310
|
|
|
if 'polarization.angle' in k: |
311
|
|
|
self._pol_angle = v |
312
|
|
|
|
313
|
|
|
# now we need to get the intergal flux |
314
|
|
|
|
315
|
|
|
_, integral = self._get_diff_flux_and_integral( |
316
|
|
|
likelihood_model_instance) |
317
|
|
|
|
318
|
|
|
self._integral_flux = integral |
319
|
|
|
|
320
|
|
|
self._likelihood_model = likelihood_model_instance |
321
|
|
|
|
322
|
|
|
def _get_diff_flux_and_integral(self, likelihood_model): |
323
|
|
|
|
324
|
|
|
n_point_sources = likelihood_model.get_number_of_point_sources() |
325
|
|
|
|
326
|
|
|
# Make a function which will stack all point sources (OGIP do not support spatial dimension) |
327
|
|
|
|
328
|
|
|
def differential_flux(scattering_edges): |
329
|
|
|
fluxes = likelihood_model.get_point_source_fluxes( |
330
|
|
|
0, scattering_edges, tag=self._tag) |
331
|
|
|
|
332
|
|
|
# If we have only one point source, this will never be executed |
333
|
|
|
for i in range(1, n_point_sources): |
|
|
|
|
334
|
|
|
fluxes += likelihood_model.get_point_source_fluxes( |
335
|
|
|
i, scattering_edges, tag=self._tag) |
336
|
|
|
|
337
|
|
|
return fluxes |
338
|
|
|
|
339
|
|
|
# The following integrates the diffFlux function using Simpson's rule |
340
|
|
|
# This assume that the intervals e1,e2 are all small, which is guaranteed |
341
|
|
|
# for any reasonable response matrix, given that e1 and e2 are Monte-Carlo |
342
|
|
|
# scattering_edges. It also assumes that the function is smooth in the interval |
343
|
|
|
# e1 - e2 and twice-differentiable, again reasonable on small intervals for |
344
|
|
|
# decent models. It might fail for models with too sharp features, smaller |
345
|
|
|
# than the size of the monte carlo interval. |
346
|
|
|
|
347
|
|
|
def integral(e1, e2): |
348
|
|
|
# Simpson's rule |
349
|
|
|
|
350
|
|
|
return (e2 - e1) / 6.0 * (differential_flux(e1) + 4 * differential_flux( |
351
|
|
|
(e1 + e2) / 2.0) + differential_flux(e2)) |
352
|
|
|
|
353
|
|
|
return differential_flux, integral |
354
|
|
|
|
355
|
|
|
def _get_model_rate(self): |
356
|
|
|
|
357
|
|
|
# first we need to get the integrated expectation from the spectrum |
358
|
|
|
|
359
|
|
|
intergal_spectrum = np.array( |
360
|
|
|
[self._integral_flux(emin, emax) for emin, emax in zip(self._response.ene_lo, self._response.ene_hi)]) |
361
|
|
|
|
362
|
|
|
# we evaluate at the center of the bin. the bin widths are already included |
363
|
|
|
eval_points = np.array( |
364
|
|
|
[[ene, self._pol_angle.value, self._pol_degree.value] for ene in self._response.energy_mid]) |
365
|
|
|
|
366
|
|
|
expectation = [] |
367
|
|
|
|
368
|
|
|
# create the model counts by summing over energy |
369
|
|
|
|
370
|
|
|
for i, interpolator in enumerate(self._all_interp): |
371
|
|
|
rate = np.dot(interpolator(eval_points), intergal_spectrum) |
372
|
|
|
|
373
|
|
|
expectation.append(rate) |
374
|
|
|
|
375
|
|
|
return np.array(expectation) |
376
|
|
|
|
377
|
|
|
def _get_model_counts(self): |
378
|
|
|
|
379
|
|
|
if self._rebinner is None: |
380
|
|
|
model_rate = self._get_model_rate() |
381
|
|
|
|
382
|
|
|
else: |
383
|
|
|
|
384
|
|
|
model_rate, = self._rebinner.rebin(self._get_model_rate()) |
385
|
|
|
|
386
|
|
|
return self._nuisance_parameter.value * self._exposure * model_rate |
387
|
|
|
|
388
|
|
|
def get_log_like(self): |
389
|
|
|
|
390
|
|
|
model_counts = self._get_model_counts() |
391
|
|
|
|
392
|
|
|
if self._background.is_poisson: |
393
|
|
|
|
394
|
|
|
loglike, bkg_model = poisson_observed_poisson_background( |
395
|
|
|
self._current_observed_counts, self._current_background_counts, self._scale, model_counts) |
396
|
|
|
|
397
|
|
|
else: |
398
|
|
|
|
399
|
|
|
loglike, bkg_model = poisson_observed_gaussian_background( |
400
|
|
|
self._current_observed_counts, self._current_background_counts, self._current_background_count_errors, |
401
|
|
|
model_counts) |
402
|
|
|
|
403
|
|
|
return np.sum(loglike) |
404
|
|
|
|
405
|
|
|
def inner_fit(self): |
406
|
|
|
|
407
|
|
|
return self.get_log_like() |
408
|
|
|
|
409
|
|
|
def writeto(self, file_name): |
410
|
|
|
""" |
411
|
|
|
Write the data to HDF5 modulation curve files. Both background and observation |
412
|
|
|
files are created |
413
|
|
|
:param file_name: the file name header. The .h5 extension is added automatically |
414
|
|
|
""" |
415
|
|
|
# first create a file container |
416
|
|
|
observation_file = ModulationCurveFile.from_binned_modulation_curve( |
417
|
|
|
self._observation) |
418
|
|
|
|
419
|
|
|
background_file = ModulationCurveFile.from_binned_modulation_curve( |
420
|
|
|
self._background) |
421
|
|
|
|
422
|
|
|
observation_file.writeto("%s.h5" % file_name) |
423
|
|
|
|
424
|
|
|
background_file.writeto("%s_bak.h5" % file_name) |
425
|
|
|
|
426
|
|
|
@property |
427
|
|
|
def scattering_boundaries(self): |
428
|
|
|
""" |
429
|
|
|
Energy boundaries of channels currently in use (rebinned, if a rebinner is active) |
430
|
|
|
|
431
|
|
|
:return: (sa_min, sa_max) |
432
|
|
|
""" |
433
|
|
|
|
434
|
|
|
scattering_edges = np.array(self._observation.edges) |
435
|
|
|
|
436
|
|
|
sa_min, sa_max = scattering_edges[:-1], scattering_edges[1:] |
437
|
|
|
|
438
|
|
|
if self._rebinner is not None: |
439
|
|
|
# Get the rebinned chans. NOTE: these are already masked |
440
|
|
|
|
441
|
|
|
sa_min, sa_max = self._rebinner.get_new_start_and_stop( |
442
|
|
|
sa_min, sa_max) |
443
|
|
|
|
444
|
|
|
return sa_min, sa_max |
445
|
|
|
|
446
|
|
|
@property |
447
|
|
|
def bin_widths(self): |
448
|
|
|
|
449
|
|
|
sa_min, sa_max = self.scattering_boundaries |
450
|
|
|
|
451
|
|
|
return sa_max - sa_min |
452
|
|
|
|
453
|
|
|
def display(self, |
454
|
|
|
ax=None, |
455
|
|
|
show_data=True, |
456
|
|
|
show_model=True, |
457
|
|
|
show_total=False, |
458
|
|
|
model_kwargs={}, |
459
|
|
|
data_kwargs={}, |
460
|
|
|
edges=True, |
461
|
|
|
min_rate=None): |
462
|
|
|
""" |
463
|
|
|
|
464
|
|
|
Display the data, model, or both. |
465
|
|
|
|
466
|
|
|
:param ax: |
467
|
|
|
:param show_data: |
468
|
|
|
:param show_model: |
469
|
|
|
:param show_total: |
470
|
|
|
:param model_kwargs: |
471
|
|
|
:param data_kwargs: |
472
|
|
|
:return: |
473
|
|
|
""" |
474
|
|
|
|
475
|
|
|
tmp = ((self._observed_counts / self._exposure) - |
476
|
|
|
self._background_counts / self._background_exposure) |
477
|
|
|
|
478
|
|
|
scattering_edges = np.array(self._observation.edges) |
479
|
|
|
|
480
|
|
|
sa_min, sa_max = scattering_edges[:-1], scattering_edges[1:] |
481
|
|
|
|
482
|
|
|
tmp_db = ((self._observed_counts / self._exposure) - self._background_counts / self._background_exposure) / ( |
483
|
|
|
sa_max - sa_min) |
484
|
|
|
|
485
|
|
|
old_rebinner = self._rebinner |
486
|
|
|
|
487
|
|
|
if min_rate is not None: |
488
|
|
|
|
489
|
|
|
rebinner = Rebinner(tmp_db, min_rate, mask=None) |
490
|
|
|
|
491
|
|
|
self._apply_rebinner(rebinner) |
492
|
|
|
|
493
|
|
|
net_rate = rebinner.rebin(tmp) |
494
|
|
|
else: |
495
|
|
|
|
496
|
|
|
net_rate = tmp |
497
|
|
|
|
498
|
|
|
sa_min, sa_max = self.scattering_boundaries |
499
|
|
|
|
500
|
|
|
if show_total: |
501
|
|
|
show_model = False |
502
|
|
|
show_data = False |
503
|
|
|
|
504
|
|
|
if ax is None: |
505
|
|
|
|
506
|
|
|
fig, ax = plt.subplots() |
507
|
|
|
|
508
|
|
|
else: |
509
|
|
|
|
510
|
|
|
fig = ax.get_figure() |
511
|
|
|
|
512
|
|
|
xs = self.scattering_boundaries |
513
|
|
|
|
514
|
|
|
if show_total: |
515
|
|
|
|
516
|
|
|
total_rate = self._current_observed_counts / self._exposure / self.bin_widths |
517
|
|
|
|
518
|
|
|
bkg_rate = self._current_background_counts / \ |
519
|
|
|
self._background_exposure / self.bin_widths |
520
|
|
|
|
521
|
|
|
total_errors = np.sqrt(total_rate) |
522
|
|
|
|
523
|
|
|
if self._background.is_poisson: |
524
|
|
|
|
525
|
|
|
bkg_errors = np.sqrt(bkg_rate) |
526
|
|
|
|
527
|
|
|
else: |
528
|
|
|
|
529
|
|
|
bkg_errors = self._current_background_count_errors / self.bin_widths |
530
|
|
|
|
531
|
|
|
ax.hlines(total_rate, sa_min, sa_max, |
532
|
|
|
color='#7D0505', **data_kwargs) |
533
|
|
|
ax.vlines( |
534
|
|
|
np.mean([xs], axis=1), |
535
|
|
|
total_rate - total_errors, |
536
|
|
|
total_rate + total_errors, |
537
|
|
|
color='#7D0505', |
538
|
|
|
**data_kwargs) |
539
|
|
|
|
540
|
|
|
ax.hlines(bkg_rate, sa_min, sa_max, color='#0D5BAE', **data_kwargs) |
541
|
|
|
ax.vlines( |
542
|
|
|
np.mean([xs], axis=1), bkg_rate - bkg_errors, bkg_rate + bkg_errors, color='#0D5BAE', **data_kwargs) |
543
|
|
|
|
544
|
|
|
if show_data: |
545
|
|
|
|
546
|
|
|
if self._background.is_poisson: |
547
|
|
|
|
548
|
|
|
errors = np.sqrt((self._current_observed_counts / self._exposure) + |
549
|
|
|
(self._current_background_counts / self._background_exposure)) |
550
|
|
|
|
551
|
|
|
else: |
552
|
|
|
|
553
|
|
|
errors = np.sqrt((self._current_observed_counts / self._exposure) + |
554
|
|
|
(self._current_background_count_errors / self._background_exposure)**2) |
555
|
|
|
|
556
|
|
|
ax.hlines(net_rate / self.bin_widths, |
557
|
|
|
sa_min, sa_max, **data_kwargs) |
558
|
|
|
ax.vlines( |
559
|
|
|
np.mean([xs], axis=1), (net_rate - errors) / |
560
|
|
|
self.bin_widths, (net_rate + errors) / self.bin_widths, |
561
|
|
|
**data_kwargs) |
562
|
|
|
|
563
|
|
|
if show_model: |
564
|
|
|
|
565
|
|
|
if edges: |
566
|
|
|
|
567
|
|
|
step_plot( |
568
|
|
|
ax=ax, |
569
|
|
|
xbins=np.vstack([sa_min, sa_max]).T, |
570
|
|
|
y=self._get_model_counts() / self._exposure / self.bin_widths, |
571
|
|
|
**model_kwargs) |
572
|
|
|
|
573
|
|
|
else: |
574
|
|
|
|
575
|
|
|
y = self._get_model_counts() / self._exposure / self.bin_widths |
576
|
|
|
ax.hlines(y, sa_min, sa_max, **model_kwargs) |
577
|
|
|
|
578
|
|
|
ax.set_xlabel('Scattering Angle') |
579
|
|
|
ax.set_ylabel('Net Rate (cnt/s/bin)') |
580
|
|
|
|
581
|
|
|
if old_rebinner is not None: |
582
|
|
|
|
583
|
|
|
# There was a rebinner, use it. Note that the rebinner applies the mask by itself |
584
|
|
|
|
585
|
|
|
self._apply_rebinner(old_rebinner) |
586
|
|
|
|
587
|
|
|
else: |
588
|
|
|
|
589
|
|
|
self.remove_rebinning() |
590
|
|
|
|
591
|
|
|
return fig |
592
|
|
|
|
593
|
|
|
# def display_circle(self, |
594
|
|
|
# ax=None, |
595
|
|
|
# show_data=True, |
596
|
|
|
# show_model=True, |
597
|
|
|
# show_total=False, |
598
|
|
|
# model_kwargs={}, |
599
|
|
|
# data_kwargs={}, |
600
|
|
|
# edges=True, |
601
|
|
|
# min_rate=None, |
602
|
|
|
# projection=None): |
603
|
|
|
# """ |
604
|
|
|
|
605
|
|
|
# :param ax: |
606
|
|
|
# :param show_data: |
607
|
|
|
# :param show_model: |
608
|
|
|
# :param show_total: |
609
|
|
|
# :param model_kwargs: |
610
|
|
|
# :param data_kwargs: |
611
|
|
|
# :return: |
612
|
|
|
# """ |
613
|
|
|
|
614
|
|
|
# tmp = ((self._observed_counts / self._exposure) - self._background_counts / self._background_exposure) |
615
|
|
|
|
616
|
|
|
# scattering_edges = np.deg2rad(np.array(self._observation.edges)) |
617
|
|
|
|
618
|
|
|
# sa_min, sa_max = scattering_edges[:-1], scattering_edges[1:] |
619
|
|
|
|
620
|
|
|
# tmp_db = ((self._observed_counts / self._exposure) - self._background_counts / self._background_exposure) / ( |
621
|
|
|
# sa_max - sa_min) |
622
|
|
|
|
623
|
|
|
# old_rebinner = self._rebinner |
624
|
|
|
|
625
|
|
|
# if min_rate is not None: |
626
|
|
|
|
627
|
|
|
# rebinner = Rebinner(tmp_db, min_rate, mask=None) |
628
|
|
|
|
629
|
|
|
# self._apply_rebinner(rebinner) |
630
|
|
|
|
631
|
|
|
# net_rate = rebinner.rebin(tmp) |
632
|
|
|
# else: |
633
|
|
|
|
634
|
|
|
# net_rate = tmp |
635
|
|
|
|
636
|
|
|
# sa_min, sa_max = np.deg2rad(self.scattering_boundaries) |
637
|
|
|
# xs = np.deg2rad(self.scattering_boundaries) |
638
|
|
|
|
639
|
|
|
# if show_total: |
640
|
|
|
# show_model = False |
641
|
|
|
# show_data = False |
642
|
|
|
|
643
|
|
|
# if ax is None: |
644
|
|
|
|
645
|
|
|
# fig, ax = plt.subplots(subplot_kw=dict(projection=projection)) |
646
|
|
|
|
647
|
|
|
# else: |
648
|
|
|
|
649
|
|
|
# fig = ax.get_figure() |
650
|
|
|
|
651
|
|
|
# if show_total: |
652
|
|
|
# pass |
653
|
|
|
|
654
|
|
|
# # total_rate = self._current_observed_counts / self._exposure / self.bin_widths |
655
|
|
|
# # bkg_rate = self._current_background_counts / self._background_exposure /self.bin_widths |
656
|
|
|
|
657
|
|
|
# # total_errors = np.sqrt(total_rate) |
658
|
|
|
|
659
|
|
|
# # if self._background.is_poisson: |
660
|
|
|
|
661
|
|
|
# # bkg_errors = np.sqrt(bkg_rate) |
662
|
|
|
|
663
|
|
|
# # else: |
664
|
|
|
|
665
|
|
|
# # bkg_errors = self._current_background_count_errors / self.bin_widths |
666
|
|
|
|
667
|
|
|
# # xs = self.scattering_boundaries |
668
|
|
|
|
669
|
|
|
# # xs = np.deg2rad(xs) |
670
|
|
|
# # sa_min = np.deg2rad(sa_min) |
671
|
|
|
# # sa_max = np.deg2rad(sa_max) |
672
|
|
|
|
673
|
|
|
# # ax.hlines( |
674
|
|
|
# # total_rate, |
675
|
|
|
# # sa_min, |
676
|
|
|
# # sa_max, |
677
|
|
|
# # color='#7D0505', |
678
|
|
|
# # **data_kwargs) |
679
|
|
|
# # ax.vlines( |
680
|
|
|
# # np.mean([xs],axis=1), |
681
|
|
|
# # total_rate - total_errors, |
682
|
|
|
# # total_rate + total_errors, |
683
|
|
|
# # color='#7D0505', |
684
|
|
|
# # **data_kwargs) |
685
|
|
|
|
686
|
|
|
# # ax.hlines( |
687
|
|
|
# # bkg_rate, |
688
|
|
|
# # sa_min, |
689
|
|
|
# # sa_max, |
690
|
|
|
# # color='#0D5BAE', |
691
|
|
|
# # **data_kwargs) |
692
|
|
|
# # ax.vlines( |
693
|
|
|
# # np.mean([xs],axis=1), |
694
|
|
|
# # bkg_rate - bkg_errors, |
695
|
|
|
# # bkg_rate + bkg_errors, |
696
|
|
|
# # color='#0D5BAE', |
697
|
|
|
# # **data_kwargs) |
698
|
|
|
|
699
|
|
|
# if show_data: |
700
|
|
|
|
701
|
|
|
# if self._background.is_poisson: |
702
|
|
|
|
703
|
|
|
# errors = np.sqrt((self._current_observed_counts / self._exposure) + |
704
|
|
|
# (self._current_background_counts / self._background_exposure)) |
705
|
|
|
|
706
|
|
|
# else: |
707
|
|
|
|
708
|
|
|
# errors = np.sqrt((self._current_observed_counts / self._exposure) + |
709
|
|
|
# (self._current_background_count_errors / self._background_exposure)**2) |
710
|
|
|
|
711
|
|
|
# ax.hlines(net_rate / self.bin_widths, sa_min, sa_max, **data_kwargs) |
712
|
|
|
# ax.vlines( |
713
|
|
|
# np.mean(xs, axis=1), (net_rate - errors) / self.bin_widths, (net_rate + errors) / self.bin_widths, |
714
|
|
|
# **data_kwargs) |
715
|
|
|
|
716
|
|
|
# if show_model: |
717
|
|
|
|
718
|
|
|
# y = self._get_model_counts() / self._exposure / self.bin_widths |
719
|
|
|
# width = sa_max - sa_min |
720
|
|
|
|
721
|
|
|
# ax.bar(np.mean(xs, axis=0), y, width=sa_max - sa_min, bottom=y, **model_kwargs) |
722
|
|
|
|
723
|
|
|
# #ax.set_xlabel('Scattering Angle') |
724
|
|
|
# #ax.set_ylabel('Net Rate (cnt/s/bin)') |
725
|
|
|
|
726
|
|
|
# if old_rebinner is not None: |
727
|
|
|
|
728
|
|
|
# # There was a rebinner, use it. Note that the rebinner applies the mask by itself |
729
|
|
|
|
730
|
|
|
# self._apply_rebinner(old_rebinner) |
731
|
|
|
|
732
|
|
|
# else: |
733
|
|
|
|
734
|
|
|
# self.remove_rebinning() |
735
|
|
|
|
736
|
|
|
# return fig |
737
|
|
|
|
738
|
|
|
@property |
739
|
|
|
def observation(self): |
740
|
|
|
return self._observation |
741
|
|
|
|
742
|
|
|
@property |
743
|
|
|
def background(self): |
744
|
|
|
return self._background |
745
|
|
|
|
746
|
|
|
@contextmanager |
747
|
|
|
def _without_rebinner(self): |
748
|
|
|
|
749
|
|
|
# Store rebinner for later use |
750
|
|
|
|
751
|
|
|
rebinner = self._rebinner |
752
|
|
|
|
753
|
|
|
# Clean mask and rebinning |
754
|
|
|
|
755
|
|
|
self.remove_rebinning() |
756
|
|
|
|
757
|
|
|
# Execute whathever |
758
|
|
|
|
759
|
|
|
yield |
760
|
|
|
|
761
|
|
|
# Restore mask and rebinner (if any) |
762
|
|
|
|
763
|
|
|
if rebinner is not None: |
764
|
|
|
|
765
|
|
|
# There was a rebinner, use it. Note that the rebinner applies the mask by itself |
766
|
|
|
|
767
|
|
|
self._apply_rebinner(rebinner) |
768
|
|
|
|
769
|
|
|
def rebin_on_background(self, min_number_of_counts): |
770
|
|
|
""" |
771
|
|
|
Rebin the spectrum guaranteeing the provided minimum number of counts in each background bin. This is usually |
772
|
|
|
required for spectra with very few background counts to make the Poisson profile likelihood meaningful. |
773
|
|
|
Of course this is not relevant if you treat the background as ideal, nor if the background spectrum has |
774
|
|
|
Gaussian errors. |
775
|
|
|
|
776
|
|
|
The observed spectrum will be rebinned in the same fashion as the background spectrum. |
777
|
|
|
|
778
|
|
|
To neutralize this completely, use "remove_rebinning" |
779
|
|
|
|
780
|
|
|
:param min_number_of_counts: the minimum number of counts in each bin |
781
|
|
|
:return: none |
782
|
|
|
""" |
783
|
|
|
|
784
|
|
|
# NOTE: the rebinner takes care of the mask already |
785
|
|
|
|
786
|
|
|
assert self._background is not None, "This data has no background, cannot rebin on background!" |
787
|
|
|
|
788
|
|
|
rebinner = Rebinner(self._background_counts, |
789
|
|
|
min_number_of_counts, mask=None) |
790
|
|
|
|
791
|
|
|
self._apply_rebinner(rebinner) |
792
|
|
|
|
793
|
|
|
def rebin_on_source(self, min_number_of_counts): |
794
|
|
|
""" |
795
|
|
|
Rebin the spectrum guaranteeing the provided minimum number of counts in each source bin. |
796
|
|
|
|
797
|
|
|
To neutralize this completely, use "remove_rebinning" |
798
|
|
|
|
799
|
|
|
:param min_number_of_counts: the minimum number of counts in each bin |
800
|
|
|
:return: none |
801
|
|
|
""" |
802
|
|
|
|
803
|
|
|
# NOTE: the rebinner takes care of the mask already |
804
|
|
|
|
805
|
|
|
rebinner = Rebinner(self._observed_counts, |
806
|
|
|
min_number_of_counts, mask=None) |
807
|
|
|
|
808
|
|
|
self._apply_rebinner(rebinner) |
809
|
|
|
|
810
|
|
|
def _apply_rebinner(self, rebinner): |
811
|
|
|
|
812
|
|
|
self._rebinner = rebinner |
813
|
|
|
|
814
|
|
|
# Apply the rebinning to everything. |
815
|
|
|
# NOTE: the output of the .rebin method are the vectors with the mask *already applied* |
816
|
|
|
|
817
|
|
|
self._current_observed_counts, = self._rebinner.rebin( |
818
|
|
|
self._observed_counts) |
819
|
|
|
|
820
|
|
|
if self._background is not None: |
821
|
|
|
|
822
|
|
|
self._current_background_counts, = self._rebinner.rebin( |
823
|
|
|
self._background_counts) |
824
|
|
|
|
825
|
|
|
if self._background_count_errors is not None: |
826
|
|
|
# NOTE: the output of the .rebin method are the vectors with the mask *already applied* |
827
|
|
|
|
828
|
|
|
self._current_background_count_errors, = self._rebinner.rebin_errors( |
829
|
|
|
self._background_count_errors) |
830
|
|
|
|
831
|
|
|
if self._verbose: |
832
|
|
|
print("Now using %s bins" % self._rebinner.n_bins) |
833
|
|
|
|
834
|
|
|
def remove_rebinning(self): |
835
|
|
|
""" |
836
|
|
|
Remove the rebinning scheme set with rebin_on_background. |
837
|
|
|
|
838
|
|
|
:return: |
839
|
|
|
""" |
840
|
|
|
|
841
|
|
|
self._rebinner = None |
842
|
|
|
|
843
|
|
|
self._current_observed_counts = self._observed_counts |
844
|
|
|
self._current_background_counts = self._background_counts |
845
|
|
|
self._current_background_count_errors = self._background_count_errors |
846
|
|
|
|